Tai Chi: A General High-Efficiency Scheduling
Framework for SmartNICs in Hyperscale Clouds

Bang Di, Yun Xu, Kaijie Guo, Yibin Shen, Yu Li, Sanchuan Cheng, Hao Zheng, Fudong Qiu,
Xiaokang Hu, Naixuan Guan, Dongdong Huang, Jinhu Li, Yi Wang, Yifang Yang, Jintao Li, Hang
Yang, Chen Liang, Yilong Lv, Zikang Chen, Zhenwei Lu, Xiaohan Ma, Jiesheng Wu
Alibaba Group

Abstract

Cloud service providers increasingly adopt SmartNICs to of-
fload data-plane services (e.g., DPDK and SPDK) and control-
plane tasks (such as disk and NIC initialization). Our analy-
sis of production environments reveals that data-plane ser-
vices statically provision CPUs for peak load, resulting in
67.5% idle CPU cycles during 99% of their runtime in IaaS
clouds, leading to wasted CPU resources. On the other hand,
control-plane tasks fail to meet critical Service Level Objec-
tives (SLOs), such as virtual machine startup time. Unfortu-
nately, achieving control-plane SLO improvements through
co-scheduling with idle data-plane services remains highly
challenging, due to the combined effects of intrinsic sched-
uling latency and the substantial architectural complexity
inherent to control-plane ecosystems.

We present Tai Chi, a hardware and software co-designed
scheduler that coordinates control-plane tasks and data-
plane services through a SmartNIC-accelerated hybrid virtu-
alization. This hybrid framework unifies physical and virtual
CPUs within a single OS while providing native inter-process
communication semantics among all tasks. By achieving
microsecond-scale scheduling precision, it reduces control-
plane operation latency by 3.1x (e.g., VM startup) while
maintaining data-plane SLO compliance, imposes negligible
scheduling overhead, and requires zero code modifications
to legacy control-plane systems. Its cross-platform SmartNIC
compatibility enables seamless and transparent deployment
in the production environment, demonstrating compelling
advantages over prior solutions in hyperscale cloud infras-
tructure.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1870-0/25/10
https://doi.org/10.1145/3731569.3764851

CCS Concepts: « Software and its engineering — Sched-
uling.

Keywords: Virtualization, Cloud Computing, SmartNIC, Sched-
uling

1 Introduction

Major cloud providers [2, 9, 41] leverage SmartNICs (AWS
Nitro [40], Alibaba CIPU [10], and Azure SmartNIC [16]) to
offload data-plane (DP) services and control-plane (CP) tasks
to pursue high performance. DP services (such as DPDK [15]
and SPDK [43]) optimize I/O processing performance. CP
tasks primarily handle device management, performance
monitoring, and infrastructure-level management (§ 2.3).

To prevent interference, CPU resources on SmartNICs are
statically partitioned between DP services and CP tasks. This
strategy prioritizes DP services by reserving CPUs based on
their peak load to ensure data-plane SLOs (such as latency
and IOPS), resulting in 67.5% CPU cycle wastage (§ 3.1). How-
ever, a critical yet overlooked issue is the growing number
of SLO violations in critical CP tasks such as VM startup la-
tency (§ 3.1). This is because the faster growth rate in server
CPU and VM density compared to SmartNIC CPUs results
in higher CP workload intensity.

Existing approaches [17, 21, 23, 29, 36] co-schedule best-
effort tasks with latency-critical tasks to utilize idle CPU
cycles. However, they face five fundamental Constraints
when applied to SmartNIC-based DP services and CP tasks
in production environments. C1: Neglect of control-plane
SLOs. Existing systems treat best-effort tasks as low-priority
and latency-insensitive. However, CP tasks require strict
SLOs (§ 3.1), fundamentally differing from best-effort tasks
and necessitating distinct handling. C2: DP tail latency spikes
from CP non-preemptible routines. CP tasks contain numer-
ous ms-scale non-preemptible routines (§ 3.2) with execution
time up to three orders of magnitude longer than the ps-scale
I/O packet processing latency. These CP routines prevent
the kernel scheduler from promptly responding to bursty
DP requests, resulting in significant long-tail latency spikes
in DP services. C3: Intrusiveness of CP modifications. Cloud
environments typically host 300 - 500 heterogeneous CP
tasks (§ 3.2). Implementing large-scale code modifications
for these tasks is impractical in hyperscale server fleets. C4:

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Incompatibility with SmartNIC hardware. Prior work rely-
ing on new hardware features (e.g., UINTR) lacks support
in modern SmartNIC CPUs. C5: Non-negligible scheduling
overhead. Conventional scheduling methods incur additional
CPU resource consumption, making them unsuitable for de-
ployment in resource-constrained environments like Smart-
NICs.

Our key insight lies in encapsulating DP services and
CP tasks via virtualization technology [1, 12, 47] to seam-
lessly achieve ps-scale scheduling latency while addressing
C1 through C4. However, virtualization incurs both resource
and performance overhead (C5). Through hybrid virtualiza-
tion with hardware-software co-design, we demonstrate that
all constraints can be effectively eliminated, including C5.

To enable efficient co-scheduling of DP services and CP
tasks on SmartNICs in hyperscale clouds, we propose a gen-
eral scheduling framework, called Tai Chi, which achieves
the following goals.

Substantial CP performance improvement. Tai Chi ex-
ecutes CP tasks on virtual CPUs and leverages idle CPU
cycles from DP services to run virtual CPUs, a strategy that
simultaneously boosts CP performance (e.g., faster VM star-
tups) during CP task bursts and elevates overall resource
efficiency.

Negligible impact to DP performance. By encapsulating
CP tasks in preemptible virtual CPU contexts, Tai Chi breaks
their ms-scale non-preemptible routines, eliminating latency
spikes for DP services and achieving ps-scale preemption.
Furthermore, Tai Chi runs DP services directly on physical
CPUs, ensuring native DP performance.

Minimized system overhead. Tai Chi proposes a hybrid
virtualization framework where virtual and physical CPUs
share a single OS, eliminating virtualization resource taxes
for device emulation and guest OS. To eradicate virtualization
performance taxes caused by (de)scheduling virtual CPUs,
Tai Chi introduces a hardware-software co-designed work-
load probe to precisely predict I/O workload arrivals before
DP processing begins. This provides a scheduling window
for virtual CPU switching prior to DP workload handling.
Full transparency. A small yet delicate modification in
the OS seamlessly enables interrupts between virtual and
physical CPUs (IPIs), allowing virtual CPUs to communicate
directly with physical CPUs. This eliminates the need for
code modifications in CP tasks while enabling native IPC
semantics between CP and DP.

Full SmartNIC compatibility. Tai Chi provides comprehen-
sive support for mainstream DP services (including DPDK
and SPDK), accommodates arbitrary CP tasks in any quan-
tity or type, and is deployable across major SmartNIC plat-
forms. (e.g., NVIDIA BlueField-3 [35], Intel IPU [19], Alibaba
CIPU [10], Azure SmartNICs [16]). These platforms inher-
ently support programmable I/O hardware accelerators to
implement our hardware-software co-designed workload

Bang Di et al.

probe, along with virtualization capabilities to enable Tai
Chi’s hybrid virtualization framework.

The main contributions of this paper are:

e We characterize real-world DP services and CP tasks
deployed on SmartNICs in production environments,
shedding light on the design principles for high-efficiency
scheduling frameworks.

e We propose Tai Chi. It implements a hybrid schedul-
ing framework that unifies physical and virtual CPUs
within a single OS. By introducing a hardware-software
co-designed workload probe, it eliminates virtualiza-
tion scheduling tax while achieving microsecond-scale
scheduling flexibility under low-resource constraints.
This design ensures SLO compliance for both control
and data planes while supporting large-scale produc-
tion deployment.

e We analyze production data to demonstrate the com-
pelling benefits Tai Chi has delivered over three years
of deployment at one of the top-tier cloud providers.
Tai Chi improves critical CP task performance (such
as VM startup time) by up to 3X while incurring only
an average 0.7% overhead on DP services.

To our knowledge, this work represents the first solution
ensuring SLO compliance for both DP services and CP tasks
leveraging virtualization technology while supporting large-
scale deployment in production SmartNICs. No prior studies
have achieved all these advantages simultaneously.

2 Background
2.1 Virtualization

Major CPU vendors provide hardware-assisted CPU virtu-
alization technologies such as Intel VT-x [47], which intro-
duces preemptible virtual CPU contexts and utilizes hardware-
automated state transitions for virtual CPU (vCPU) schedul-
ing on physical CPUs. This virtualization capability has be-
come a standard feature in modern x86 [1, 47] and ARM [12]
architectures, including SmartNIC CPUs.

Cloud service providers (CSPs) utilize virtualization tech-
nologies to create multiple virtual machines (VMs) on a sin-
gle physical host, enabling resource sharing and isolation
across multi-tenant environments. The number of virtual
machines (VMs) per physical host, also known as instance
density, varies across deployment models. (1) The normal
instance density: VMs employ dedicated CPU resources (e.g.,
192 physical CPUs supporting 96 instances with 2 vCPUs
each). (2) The high instance density: platforms achieve 4x
higher density (384 instances per 192 CPUs node) through
CPU over-provisioning techniques.

2.2 T/0 Acceleration

Bare-metal scenario. In this scenario (shown in Figure 1a),
a single tenant exclusively occupies all compute resources.
Most academic works [17, 21, 23, 29, 36] focus on accelerating

Tai Chi : A General High-Efficiency Scheduling Framework for SmartNICs in Hyperscale Clouds SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

I/0 packet processing (networking and storage) in this setup.
They leverage user-space I/O frameworks like DPDK (SPDK
is identical with DPDK in all scenarios, and we use DPDK
as an example to demonstrate) to bypass the kernel and
communicate directly with NICs, while designing custom
schedulers to balance latency-critical (LC) performance (e.g.,
memcached) with best-effort (BE) task scheduling (e.g., batch
jobs) for improved CPU utilization.
VM scenario. To enable multi-tenant hardware sharing and
reduce costs, CSPs employ virtualization. However, tenant
VMs cannot directly access physical NICs and instead use
QEMU-emulated virtual NICs (vNIC). Early CSPs address
I/O acceleration by co-locating DPDK with QEMU and KVM
on the host (shown in Figure 1b). While this provides I/O
acceleration for latency-critical applications across VMs, it
introduces latency spikes due to resource contention (e.g.,
CPU scheduling priority mismatches) between DPDK and
host processes like QEMU.
VM scenario with SmartNICs. SmartNICs provide CSPs
with opportunities to mitigate interference and enhance I/O
performance through hardware-software co-design. Smart-
NICs incorporate a limited number of general purpose cores
(ARM or x86 cores) and programmable I/O hardware accel-
erators (FPGA or ASIC) on a compact PCI device. General
purpose cores support to run full-fledged operating systems,
enabling DPDK offloading to eliminate resource contention-
induced latency spikes. To further eliminate latency spikes
caused by internal interferences in DPDK, CSPs partition
DPDK into two components (shown in Figure 1c). (1) DP
services: they statically reserve the majority of cores for
latency-sensitive I/O processing and leverage programmable
I/O hardware acceleration to further optimize performance.
(2) CP tasks: CP tasks manage device operations through
coordination with QEMU on the host, focusing on control-
path functions. Upon a VM launch request, the CSP selects a
suitable server from its resource pool. Then, CP tasks and
DP services collaborate to provision IO devices, after which
the host’s QEMU is notified to instantiate the VM (§ 2.3).
This design pattern has been widely adopted in production
environments (e.g., AWS Nitro [40], Azure SmartNIC [16],
and Alibaba CIPU [10]) and commercial SmartNIC solutions
(e.g., NVIDIA BlueField-3 [35] and Intel IPU [19]).

2.3 Data-plane and Control-plane

Data-plane 1I/O path. Figure 1c (blue arrow) shows data-
plane I/O path with SmartNICs. The programmable I/O accel-
eration hardware in SmartNICs enables multiple emulated
NICs (eNIC) and is attached to the physical machine via
PCle, then directly passed through to VMs (@). I/O requests
from the device driver to the eNIC are first preprocessed and
accelerated by the SmartNIC’s programmable accelerator,
then processed by the data-plane service (@), and finally
forwarded to the NIC for transmission (€) and @).

[VM 1
VM0
I/0 path — — > VM creation process — — >
tasl tas
NIC driver
VM0
Bare-metal 5
X BE N |
H — osp [QEMUandkvM N] Host
HH =
\

t?sk task I—NW') N

I'Custom = = \ "

cheduler DPDK

pened [wnic] [wNic T 0 3

DPDK QEMU and KVM | | SPDK - - Programmable I/O

: SPDKor 4 accelerator

; Host , N

'l 1.4

| NICs |
Nics NICs SmartNIC

(a) Bare-metal (b) VMs with virtual NIC (c) VMs with SmartNICs

Figure 1. I/O accelerating architectures across three deploy-
ment models: (a) bare-metal with an exclusive NIC, (b) VMs
with virtual NIC, and (c¢) VMs with SmartNICs.

Control-plane tasks. CP tasks primarily consist of three
categories. (1) Device Management: Initialize/Deinitialize
resources for emulated devices; these operations critically
influence virtual machine (VM) creation and destruction.
(2) Performance monitoring: they collect SmartNIC opera-
tional metrics (e.g., eNIC throughput, CPU utilization, power
consumption) for load balancing and preserve logs. (3) CSP
orchestration: they interface with cluster management soft-
ware through secured APIs to coordinate infrastructure-level
operations. CP tasks have to run on SmartNICs due to their
tight coupling with DP operations and SmartNIC manage-
ment and monitoring infrastructure. Unlike best-effort tasks,
CP tasks require frequent OS interactions through system
calls, thereby inheriting OS scheduling latencies resulting
from non-preemptible routines (§ 3.2).

As an example, Figure 1c (red arrow) shows VM creation
process via CP tasks. The cluster management software first
issues commands to the CP tasks with required device spec-
ifications (€)). These tasks parse the instructions (@) and
coordinate the data-plane to complete device initialization
(®). Once initialized (@), CP tasks notify QEMU to trigger
VM creation (@) and subsequently monitor SmartNIC and
device performance. This workflow demonstrates that CP
tasks directly impact VM startup SLOs, as device initializa-
tion by these tasks is a prerequisite for VM instantiation.

3 Motivation

3.1 Challenges and Opportunities in Production
Environments

CPU shortage of CP tasks. To guarantee I/O SLOs, static
partitioning of CPU resources between DP services and CP
tasks is implemented to avoid interference. This strategy
prioritizes DP services by reserving CPUs based on their
peak load to ensure DP SLOs. However, CP tasks involving

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

| —=— Avg. VM startup time (x)
—e— Avg. execution time of a CP task

Slowdown (x)
N

0 T T T

2 3
Instance density (x)

Figure 2. The average VM startup time and CP task exe-
cution time across varying instance densities. The x-axis
represents instance density, while the y-axis shows time nor-
malized to SLO targets.

device management directly impact critical SLOs such as
VM startup time. Additionally, as instance density increases,
the number of devices managed by CP tasks becomes sub-
stantially higher (four times that of the low instance density
baseline), further degrading VM startup performance. To
quantitatively understand this problem, we collected data on
average VM startup time and the execution time of device
management CP tasks (§ 2.3) across different instance den-
sities in the production environment. Figure 2 shows that
CP task execution time degrades by 8%, while VM startup
time exceeds SLO targets by 3.1x at four times the baseline
instance density. These SLO violations become so frequent in
high-density, million-scale clouds, as can be observed every
day in the server fleet.

1.0

0.9

0.8 -
w 07 1 X=32.5%; Y =0.9968
8 0.6 -
0.5 ~
0.4 -
0.3 -
0% 20% 40% 60% 80% 100%
Data-plane CPU utilization

Figure 3. CDF of data-plane CPU utilization. Each data point
represents the proportion (Y) of the dataset where data-plane
CPU utilization remains below a specified threshold (X).

Low CPU utilization in DP services. DP services em-
ploy over-provisioned CPUs to maintain low tail latency for
bursty workloads, resulting in significant CPU underutiliza-
tion. To quantify this, we collected CPU utilization metrics
from DP services (including networking and storage subsys-
tems) per second across hundreds of computing nodes over
12 hours (approximately 1.2 million records). To quantify
the distribution, Figure 3 shows a cumulative distribution

Bang Di et al.

function (CDF) plot that 99.68% of CPU utilization values fall
below 32.5% (indicating 67.5% idle CPU cycles). This ineffi-
ciency stems from production environments provisioning
CPU reserves for storage and networking subsystems based
on their peak demands.

Observation 1: DP services have ample idle CPU resources
that CP tasks can exploit to address performance bottle-
necks.

3.2 In-Depth Analysis of Production Environments

Scheduling-constrained CP tasks. Directly scheduling
CP tasks onto idle CPU cycles of DP services may introduce
latency spikes. This occurs because CP tasks frequently re-
quire system calls for operations such as NIC configuration
and logging (§ 2.3), inheriting OS preemption constraints
(e.g., non-preemptible kernel routines). During these routines,
CP tasks cannot be preempted by the OS scheduler, forcing
DP services to wait even when urgent I/O workloads arise,
thereby violating latency SLOs. Figure 4 illustrates a latency
spike caused by a non-preemptible routine (spinlock) of a CP
task. A DP service remains idle during period T1-T2. A CP
task, after user-space computation, enters kernel space and

A latency spike

| |
Non-preemptible
routine

Figure 4. An example to demonstrate how non-preemptible
routines (e.g., spinlock) in CP tasks induce latency spikes
when co-scheduled with DP services.

Co-running a DP
service and a CP task

M N
T T2 T3
L 4 L 4 @ Timeline
| | |
I) }
A DP service | Idle CPU cycles | |
] |]
|
| Userspace . .
A CP task : computing Holding spin lock
|
1
I
1

£510°7 431761

o |]

© 4x10° 1

2

§'3x105- Max duration: 67 ms

[0}

2 2x10°

S

S 1x10°

2 _17112 5435 1636 541 157 101
=1 04 n n m -
é T T T T T T T
= 1-5 5-6 6-7 7-8 8-9 9-10 >10

The duration of non-preemptible routines (ms)

Figure 5. The number of non-preemptible routines for dif-
ferent durations. The x-y means the duration ranges from x
ms to y ms.

Tai Chi : A General High-Efficiency Scheduling Framework for SmartNICs in Hyperscale Clouds SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

acquires a driver-related spinlock to perform the initializa-
tion and configuration of I/O devices. If scheduled at T1, the
CP task occupies the CPU until T3, delaying DP execution
due to the non-preemptible routine during the lock hold,
resulting in a latency spike (T2-T3).

To quantify these impacts, we traced non-preemptible
routines across dozens of computing nodes over 12 hours
in the production server fleets. Figure 5 shows the distri-
bution of long-tail occurrences (>1 ms), with over 456,000
non-preemptible routines exceeding 1 ms (94.5% lasting 1-5
ms) and a maximum duration of 67 ms. In large-scale produc-
tion environments (hundreds of thousands of nodes), each
ms-scale latency spike of DP services in latency-sensitive
scenarios (e.g., finance or live streaming) is unacceptable be-
cause it results in customer complaints and financial penal-
ties due to SLO violations.

Prohibitive deployment complexity in SmartNICs. Smart-
NICs face inherent CPU scarcity (e.g., NVIDIA BlueField-3
provides only 8 to 16 ARM CPUs [35]), necessitating light-
weight scheduling mechanisms to minimize resource con-
tention. Furthermore, the CP ecosystem comprises 300-500
heterogeneous tasks spanning C, Python, Java, Bash, and
Rust, demanding non-intrusive deployment strategies to ac-
commodate multi-language implementations without code
modification.

Observation 2: An efficient scheduling framework for co-
scheduling CP tasks and DP services must address two criti-
cal requirements: (1) eliminating ms-scale non-preemptible
routines in CP operations to achieve ps-scale scheduling
granularity, and (2) ensuring lightweight execution and full
transparency of CP tasks to enable seamless large-scale
deployment.

3.3 Limitations of Existing Works

Existing works [17, 21, 23, 29, 36] primarily focus on opti-
mizing latency-critical and best-effort tasks in bare-metal
environments (§ 2.2), rather than coordinating DP services
and CP tasks on SmartNICs. They ensure LC performance
by aggressively prioritizing it over BE tasks. However, this
strategy is incompatible with CP and DP co-scheduling, as
CP demands deterministic SLO compliance like DP (§ 3.1).
Furthermore, existing approaches exhibit three critical lim-
itations (summarized in Table 1). (1) Conventional sched-
ulers [17, 21, 36] and modern interrupt-based techniques
(e.g., UINTR [23, 29]) rely on OS-internal scheduling mecha-
nisms that cannot bypass non-preemptible routines, result-
ing in ms-scale latency spikes for DP services. (2) Solutions
like Caladan [17] and Shenango [36] employ dedicated I/O
polling threads that permanently occupy at least one CPU
core on resource-constrained SmartNICs (only 8 to 16 ARM
CPUs [35]). This significantly reduces the performance ceil-
ing of DP I/O under high workloads (if the CPU is allocated

Table 1. Comparison between prior works and Tai Chi for
coordinating DP services and CP tasks on SmartNICs.

Scheduling granulasity | Fremevorl [Transpency
Shenango [36] ms-scale High Partial
Caladan [17] ms-scale High Partial
Concord [21] ms-scale Low Partial
Skyloft [23] ms-scale Low Partial
Vessel [29] ms-scale Low Partial
Tai Chi ps-scale Low Full

from the data plane) or degrades CP performance (if taken
from the control plane) (3) Existing approaches require in-
trusive system modifications, making them impractical for
production environments with complex CP ecosystems.

3.4 Virtualization as a Solution

SmartNICs support generalized virtualization which enables
preemptible vCPU contexts. An interesting observation is
that vCPU contexts can be interrupted at any time (VM-exit)
by an external event. This allows us to use vCPUs to iso-
late DP services and CP tasks while co-scheduling them on
the same core. By doing so, we bypass OS scheduler limita-
tions, including non-preemptible routines, thereby enabling
ps-scale scheduling precision. Therefore, vCPU contexts are
well-suited to execute additional CP tasks while safely steal-
ing idle cycles from DP services. However, traditional type-1
(such as Xen [5]) and type-2 virtualization (e.g., QEMU and
KVM) techniques present fundamental limitations for Smart-
NIC deployments.

Traditional type-1 virtualization. It places every work-
load in the same guest OS, forcing both DP services and
CP tasks to run in non-root mode. It introduces significant
performance slowdowns in DP services due to the inherent
virtualization tax: (1) inherent performance degradation (e.g.,
nested page table) when executing DP services on vCPUs
compared to physical CPU execution; (2) a 2ps scheduling
latency during vCPU context switching when CP tasks re-
linquish CPUs to DP services. Our experiments show the
introduction of a virtualization layer in the data plane results
in an average 7% performance degradation (§ 6.3).
Traditional type-2 virtualization. It is equipped with a
native SmartNIC OS, making it suitable for executing DP
services while isolating CP tasks in a separate guest OS.
However, this approach isolates DP services and CP tasks
in separate operating systems, breaking their native inter-
process communication (IPC) and violating the aforemen-
tioned Observation 2. As illustrated in Figure 1 (@ and @),
the tightly coupled DP/CP interactions rely on native high-
performance IPC mechanisms (e.g., shared memory, signals,
pipes, filesystem access, and direct function calls). Isolating
DP and CP in separated OS breaks the native IPC semantics,
necessitating intrusive code modifications to replace every
single IPC with RPC. Further, emulating a redundant guest

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Table 2. Comparison among type-1 virtualization, type-2
virtualization, and Tai Chi.

[Type-1(Xen[5]) | Type-2 (QEMU+KVM) [TaiChi
DP residency Guest OS SmartNIC OS SmartNIC OS
DP performance Low (virtualization tax) | Medium (a 2us scheduling latency) High
CP residency (vCPU) Guest OS Guest OS SmartNIC OS
OS count 1 2 1
DP-CP IPC Native Broken Native

OS wastes valuable CPU and memory resources, necessitat-
ing at least one dedicated CPU for both device emulation
and the guest OS, excessively encroaching on CPU resources
(NVIDIA BlueField-3 provides only 8 to 16 ARM CPUs). Our
experiments confirm this CPU wastage degrades DP perfor-
mance by 25.9% (§ 6.3). Finally, like type-1 virtualization, a
persistent 2ps scheduling latency occurs when CP tasks yield
CPUs to DP services.

Hybrid virtualization. We propose a hybrid virtualization
approach that seamlessly integrates vCPU contexts with
physical CPU contexts within the native SmartNIC OS. This
methodology eliminates traditional virtualization overheads
while preserving native DP-CP IPC semantics. Specifically,
it exposes a set of vCPUs as additional physical CPUs to the
SmartNIC OS, enabling the OS to schedule tasks across all
CPUs without modifications. CP tasks execute on vCPUs
and can be preempted at ps-scale granularity, circumventing
limitations of non-preemptible routines. Then, it runs DP ser-
vices directly on physical CPUs without virtualization layers,
avoiding performance degradation from virtualization. Last,
the OS kernel supports various inter-core IPC mechanisms
through inter-processor interrupts (IPIs) and shared mem-
ory. The hybrid virtualization leverages IPI orchestration and
unified memory layer to share the same native OS between
vCPUs and physical CPUs, maintaining native CP-DP IPC
semantics. Table 2 demonstrates that Tai Chi overcomes the
disadvantages of these traditional methods.

Observation 3: A software-oriented hybrid virtualiza-
tion architecture eliminates virtualization-induced resource
overhead, preserves native DP-CP IPC semantics, and effec-
tively overcomes limitations of non-preemptible routines.

Hiding scheduling latency. The aforementioned 2ps sched-
uling latency during vCPU context switching still exists in
hybrid virtualization environments when CP tasks (vCPU
contexts) relinquish CPUs to DP services. SmartNICs give
us a chance to hide it. DP services leverage SmartNIC I/O
hardware accelerators for I/O offloading (§ 2.3). These accel-
erators detect I/O workloads earlier than DP services, creat-
ing a window to proactively preempt CP’s vCPUs, thereby
hiding the 2us scheduling latency. Figure 6 illustrates timing
breakdowns of SmartNIC I/O packet processing (including
networking and storage) for packet sending (packet receiv-
ing is identical): @ the device driver sends an I/O request to
the SmartNIC; @ the accelerator preprocesses (2.7s) the I/O

Bang Di et al.

Guest driver Programmable I/O accelerator Memory

@ Sending the /0 packet .

@ Hardware preproceésing
@.7ps) .

—_— s
. © DMA writing
(0.5ps)

O Poliing the I/O packet |

Figure 6. The breakdown of processing I/O packets in DP
services.

request, including moving the data from the original buffer
to its internal buffer and processing the payloads; @) transfer-
ring (0.5us) the preprocessed packets to the memory shared
with the corresponding DP service; @ DP services poll new
packets and perform software-based packet processing.

DP services

Observation 4: By leveraging the 3.2ps I/O preprocessing
window (@) and €)), we can hide the 2ps scheduling latency

incurred during vCPU context switching.

4 Design

Based on the aforementioned observations and analysis, we
propose Tai Chi, a two-layer architecture (shown in Fig-
ure 7a) that enables OS-transparent hybrid virtualization.
From the perspective of the SmartNIC’s native OS, additional
CPUs (virtualized by Tai Chi) are provisioned as if they are
physical CPUs (pCPUs), enabling the OS to schedule tasks
across all CPUs without modifications. Standard tools such
as Iscpu perceive them all as real physical cores. However, im-
plementing the aforementioned hybrid virtualization is non-
trivial, as it necessitates achieving the following objectives:
(1) OS transparency: achieving normal physical CPU-like
inter-processor interrupt (IPI) communication and establish-
ing identical memory views between vCPUs and pCPUs;
(2) efficient vCPU scheduling: dynamically scheduling CP
vCPU onto DP pCPUs while ensuring SLO compliance for
both DP services and CP tasks. To achieve OS transparency,
Tai Chi designs a unified IPI orchestrator that intercepts and
simulates IPIs between vCPUs and pCPUs. Tai Chi imple-
ments a 1:1 mapping between guest physical addresses and
host physical addresses to ensure a consistent memory view
for processes executing on vCPUs and pCPUs. For efficient
vCPU scheduling, Tai Chi introduces the vCPU scheduler
and the hardware-software co-design workload probe to dy-
namically map these vCPUs to idle pCPUs without violating
SLOs for either CP tasks or DP services.

Figure 7b illustrates a high-level overview of Tai Chi. Tai
Chi consists of three main components: the vCPU scheduler

Tai Chi : A General High-Efficiency Scheduling Framework for SmartNICs in Hyperscale Clouds SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

IPl path ——> DP-to-CP scheduling —— CP-to-DP scheduling ——

. r= =25 - ====== ;
Unified IPI CPU runqueue | DP services
|
orchestrator —> Workload probe —> vCPU scheduler —> . = o Switching P | Adaptivelyielding | CP tasks
Provisioned by Tai Chi : vCPU : algorithm
| softirg | _| |
| | handler ! ;‘ ---- g
| | CPUO CPU1 vCPU2 !
| DP e Switching | , [|
physical CPU I .~ f

Programmable 1/0
HW accelerator

T_,_,I Unified IPI Orchestrator

eTriggering a o Identifying idle DP CPU cycle

interruption

IREEELR | Software workload probe |
workload probe
Sending softirq s
cruo| vp |[|@ updating cpu state |© o ran @ vaPU © Notifying
CPU1| V/P vCPU scheduler |
eUpdating CPU state
CPUID State

@ An 1/0 packet to DP services

(a) OS-transparent hybrid virtualization

(b) The overview of Tai Chi

Figure 7. The demonstration of Tai Chi.

(8§4.1), the unified IPI orchestrator (§4.2), and the software-
hardware cooperative workload probe (§4.3).

Tai Chi deploys over-provisioned CP tasks on vCPUs. To
enable DP-to-CP scheduling that utilizes idle DP CPU cy-
cles to run vCPUs (CP tasks), the software workload probe
provides an adaptive yield algorithm that monitors consecu-
tive empty-polling counts (indicating I/O idleness) of every
DP service. If the software workload probe identifies that
a CPU becomes idle (@), it notifies the vCPU scheduler
(@). The scheduler then selects a vCPU and triggers con-
text switching by delivering a dedicated softirq to an idle
CPU (@), which activates registered softirq handlers to exe-
cute a CP task in the vCPU context (@). Subsequently, the
vCPU scheduler updates corresponding CPU state records in
the hardware workload probe to "V-state" (denoting vCPU
contexts) for future CP-to-DP scheduling coordination (@).
This mechanism breaks ms-scale non-preemptible routines
in CP tasks through vCPU execution, achieving microsecond-
granularity scheduling while ensuring CP SLOs and enhanc-
ing CPU utilization via DP-to-CP scheduling.

To ensure DP SLOs, Tai Chi directly deploys DP services
on pCPUs to avoid data-plane virtualization overhead. Addi-
tionally, Tai Chi implements the hardware workload probe
in the SmartNIC’s programmable I/O accelerator to leverage
I/O preprocessing windows (§ 3.4) for proactively restor-
ing DP executions (CP-to-DP scheduling). When detecting
a DP I/O packet (@), the hardware probe verifies the desti-
nation CPU state of the I/O packet. If the CPU is in vCPU
state (V-state), the probe triggers an interrupt request to the
destination CPU (@), inducing a VM-exit to halt the vCPU
and return control to the vCPU scheduler. The scheduler
then restores the DP context, resumes DP service execution
(®), and updates the CPU state to P-state (denoting pCPU
contexts and masking interrupt) in the hardware workload

probe (@). The CPU state is used to avoid persistently issu-
ing interrupts to DP services running on pCPUs (P-state),
causing performance degradation. This mechanism overlaps
DP service restoration with I/O preprocessing windows, ef-
fectively hiding virtualization-induced scheduling latency
to guarantee DP SLOs.

To ensure seamless sharing of the SmartNIC OS between
vCPUs and pCPUs and achieve native IPC, Tai Chi introduces
the unified IPI orchestrator to integrate vCPUs and pCPUs in
a same OS. This IPI orchestrator hooks into the OS’s IPI dis-
patch mechanism and routes IPIs to target vCPUs or pCPUs.
Based on this unified IPI orchestrator, Tai Chi then registers
vCPUs as native CPUs to the OS, allowing CP tasks to bind
to vCPUs via standard CPU affinity mechanisms without
requiring code modifications.

4.1 vCPU Scheduler

To achieve a hybrid virtualization framework, Tai Chi co-
locates vCPUs with pCPUs within a single OS (§ 4.2). This
design requests context switching between vCPUs and pC-
PUs within the same OS. To address this, the vCPU scheduler
implements a softirq-based context switching mechanism.
A softirq-based vCPU scheduling mechanism. (1) pCPU-
to-vCPU context switching: When the software workload
probe notifies an idle DP CPU, the vCPU scheduler selects a
vCPU from the runnable queue via round-robin policy and
raises a dedicated softirq on the idle CPU to prepare the vCPU
execution. The corresponding softirq handler prepares the
vCPU context, saves the current pCPU state, and performs
the context switch. (2) vCPU-to-pCPU context switching:
Upon vCPU time slice expiration or CP-to-DP scheduling
requirements, the scheduler saves the vCPU context, restores
the pCPU state, exits the softirq, and resumes native DP
service execution.

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

(a) Registering vCPU as native CPU

vCPU1)) T Timeline
Creating vCPU1
os Unified IPI Orchestrator |—>Timeline
Initializing vCPU1 | Startuping vCPU1 Respondingl,
CPUO Timeline
(b) Intercepting and routing IPI
vCPU: VM-exit
vCPU
scheduler
Source N Destination
o C(P:L'jg sta't:e. CPU state? vCPU
v CPL?r CPUO| P Injecting IPIs
e CPU1 v CPU1 Vv
pCPU
pCPU writing MSR
to send IPIs
|] 1]
v A\

Source CPU phase Destination CPU phase
Figure 8. A demonstration of (a) registering vCPU as native
CPU on OS and (b) intercepting and routing IPIs.

An adaptive vCPU time slice. Fixed vCPU time slices can
increase unnecessary and costly VM-exits, even when DP
services remain idle. To minimize such overhead, the vCPU
scheduler dynamically adapts time slices based on VM-exit
reasons, thereby aligning scheduling granularity with actual
DP patterns. The initial vCPU time slice is set to 50us and
dynamically adjusted based on VM-exit reasons. If vCPU
time slice expiration causes VM-exit, the vCPU scheduler
doubles vCPU time slices (e.g., 50us to 100us) under the
assumption of persistent DP CPU idleness, reducing the
frequency of VM-exits. If the hardware workload probe (§ 4.3)
causes VM-exit, the vCPU scheduler resets the vCPU time
slice to 50ys.

Safe CP-to-DP scheduling in lock context. When a CP
task holds a lock (such as a spinlock, detailed in § 3.2), a CP-to-
DP scheduling that preempts the vCPU of the CP task risks
deadlock. This occurs if the preempted vCPU is unscheduled
for an extended period while other threads (running on other
pCPUs or vCPUs) depend on it to release the lock. To resolve
this, Tai Chi immediately reschedules the preempted vCPU
onto an idle DP’s pCPU to continue execution. If no idle
DP pCPU is available (an event with extremely low proba-
bility PN, where P denotes the probability of a DP’s pCPU
being busy and N represents the count of DP pCPUs), the
preempted vCPU is scheduled onto a dedicated CP’s pCPU
via round-robin scheduling. This process guarantees forward
progress, eliminating the risk of deadlocks or hung tasks.

4.2 Unified IPI Orchestrator

To eliminate virtualization overhead from device emulation
and guest OS operations, Tai Chi enables vCPUs and pCPUs
to share a single OS. However, direct IPI communication

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

Bang Di et al.

void polling_IO_queue(uint32_t qid) {
. // Initialization
uint32_t empty_polling_num = 0;
while (true) {

uint32_t packet_num = rte_eth_rx_burst(qid);

if (packet_num == 0) {
empty_polling_num++;
} else {

empty_polling_num = 0;
. // Processing I/0 packets
3

if (empty_polling_num > threshold)
notify_idle_DP_CPU_cycles(); // Notify Tai Chi

}

Figure 9. A code snippet demonstrating polling I/O packets
and how to notify Tai Chi of an idle CPU cycles in DP ser-
vices.

between vCPUs and pCPUs is infeasible. The unified IPI or-
chestrator addresses this by intercepting all IPI transmissions
and routing IPIs according to CPU state (virtual or pCPU).
Intercepting and routing IPIs. IPIs involve source CPU
and destination CPU. As illustrated in Figure 8b, the unified
IPI orchestrator operates in two phases. In the source CPU
phase, no special action is taken if the source CPU is a pCPU.
For a vCPU source, a VM-exit is triggered to return control
to the vCPU scheduler, which reissues the IPI, thereby ensur-
ing proper IPI propagation across virtualization boundaries.
Then, the unified IPI orchestrator steps into destination CPU
phase. For pCPU destination, IPIs are delivered via low-level
Model-Specific Register (MSR) writes. If a destination CPU
is runnable or running vCPU, the unified IPI orchestrator
directly injects IPIs. If a destination CPU is sleeping vCPU,
the orchestrator first awakens the vCPU and subsequently
delivers the interrupt.

While Tai Chi provides vCPU contexts for CP task exe-
cution, modifying hundreds of heterogeneous CP tasks to
assign CP tasks to vCPU contexts is impractical. To address
this, Tai Chi leverages the unified IPI orchestrator to register
vCPUs as native CPUs on the OS, allowing CP tasks to run
on vCPUs via standard CPU affinity binding without code
modifications.

As shown in Figure 8a, the vCPU scheduler creates vCPUs
with metadata (e.g., CPU ID, LAPIC ID) and registers them
with the OS. Initially, these vCPUs appear as offline CPUs
to the OS. Tai Chi sends CPU initialization and boot-related
IPIs to these offline vCPUs, triggering their activation. Those
IPIs are intercepted by unified IPI orchestrator and routed to
target vCPUs. Once vCPUs finish initialization, these vCPUs
are online and the OS treats vCPUs as native CPUs, allowing
binding CP task to vCPUs via standard affinity configuration.

4.3 Workload Probe

In this section, we define yield as DP releasing CPU re-
sources to CP, and preempt as DP reclaiming CPU resources

Tai Chi : A General High-Efficiency Scheduling Framework for SmartNICs in Hyperscale Clouds SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

CPUID State

CPUO Halting CP tasks
Guest driver Programmable I/Q accelerator * Memory CPU

. © Sending the I/0 packet(;\' LT : V-state: triggering an IRQ
. N T Causing VM-exit and
. h . N switching DP services
: - . : (2p9)
.9 Hardware preprocessing : Updating V-state to P-state
. (2.7ps) .

—_

. © DMA writing 1 -

(0.5ps) @ Polling the 1/0 packet |

Starting to run
DP services

Figure 10. A demonstration of hardware workload probe.

from CP. Achieving efficient scheduling between CP and DP
is challenging: (1) For DP-to-CP yielding, Tai Chi should yield
idle DP CPU cycles to CP as much as possible. However, strik-
ing a balanced yielding point empirically is difficult, given
the varied patterns of DP workloads in the real world. (2) For
CP-to-DP preemption, Tai Chi should promptly switch back
to DP services to prevent latency spikes in I/O path, yet vir-
tualization inherently introduces a 2ps scheduling overhead
during context switching.

To address challenge (1), Tai Chi implements a software
workload probe that employs adaptive yielding algorithm
to dynamically adjust DP-to-CP yield criteria based on VM-
exit reasons. To address challenge (2), Tai Chi implements
hardware workload probe that leverages SmartNIC I/O pre-
processing windows to achieve proactively preemption and
hide virtualization scheduling latency.

Adaptive yielding algorithm. DP services poll for new I/O
requests and empty polling (lines 6-8 in Figure 9) indicates an
idle state. When the empty-polling count exceeds a threshold,
idle DP CPU cycles are detected, triggering a yield (line
14 in Figure 9). This threshold is introduced to filter out
exceedingly short idle periods. Without this filtering, a high
frequency of such short idle periods can induce frequent
context switching between CP and DP, resulting in latency.

A naive approach uses a fixed threshold (N) of consecutive
empty polls to confirm idleness. However, an overly large
N wastes CPU resources, while an overly small N increases
false positives. Tai Chi employs an adaptive algorithm. N
starts with an initial value and is adjusted based on VM-exit
reasons. If the expiration of a vCPU time slice triggers a
VM-exit, this indicates sustained idleness in the DP CPU,
which prompts the system to decrease the N. This adjust-
ment enables the dynamic reallocation of a larger proportion
of idle CPU cycles to CP tasks. If the vCPU is preempted by
hardware workload probe (indicating a false-positive yield),
N increases. This dynamically optimizes idle detection, bal-
ancing false positives and CPU utilization.

Hardware workload probe. As shown in Figure 10, the
programmable I/O hardware (§ 2.2) provides I/O preprocess-
ing windows (@ and @)). Based on this observation, Tai Chi

implements a hardware workload probe. The probe main-
tains internal CPU state information for all pCPUs, which
is updated by the vCPU scheduler. Prior to I/O preprocess-
ing (@), the probe inspects the destination CPU’s state of
an I/O packet. When detecting a vCPU state (V-state), the
probe asynchronously triggers an interrupt request (IRQ) to
the target CPU, notifying the vCPU scheduler to resume DP
service execution. Then, the vCPU scheduler transitions the
CPU state to pCPU (P-state). By overlapping vCPU preemp-
tion with I/O preprocessing windows, it effectively hides
virtualization scheduling overhead.

5 Implementation

Tai Chi’s implementation comprises two components: a soft-
ware module (approximately 5,800 lines) implementing a
hybrid virtualization framework as a Linux kernel module,
and a hardware component (approximately 30 lines) modify-
ing programmable I/O processing accelerators to realize the
hardware workload probe.

To enable unified IPIs, Tai Chi intercepts all IPIs via the ker-
nel’s x2apic_send_IPI function. For data-plane deployment,
Tai Chi introduces a dedicated notify_idle_DP_CPU _cycles
API that allows DP services to notify idle CPU time slices
with minimal code modifications (requiring fewer than 10
lines). Since vCPUs are registered as native CPUs, CP tasks
are deployed by binding them to vCPUs and CP-dedicated
physical CPUs through standard CPU affinity configuration
(e.g., cgroup), and DP services are exclusively pinned to phys-
ical CPUs.

Tai Chi utilizes Posted-Interrupt technology [47] to mini-
mize vCPU VM-exit overhead, and maintains compatibility
with other hardware virtualization features, such as IPIv.

6 Evaluation

In this section, we validate that Tai Chi effectively addresses
the aforementioned challenges by quantitatively answering
the following questions:

Q1: What performance improvements does Tai Chi deliver
for CP tasks (§ 6.2)?

Q2: Is the hybrid virtualization mechanism sufficiently light-
weight to minimize virtualization overhead while preserving
data-plane performance (§ 6.3)?

Q3: Can the hardware workload probe effectively hide virtu-
alization induced scheduling latency to ensure low-latency
DP operations (§ 6.4)?

Q4: Does it minimize performance degradation on DP ser-
vices (§ 6.5)?

Q5: Can Tai Chi maintain CP’s SLOs in production environ-
ments, even under high CP stress (§ 6.6)?

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Bang Di et al.

Table 3. Benchmarks with experiment setup and metrics for the evaluation.

Name Case Experiment setup Metrics
synth_cp synth_cp A synthetic CP benchmark with high-concurrency support. The execution time of CP tasks.
fio [45] fio_rw Using 16 threads with libaio to assess 4KB block performance. IOPS and bandwidth (bw).

udp_stream | Measuring UDP bandwidth with 64 concurrent connections.

Average RX bandwidth (avg_rx_bw).

netperf [33] tep_stream | Assessing TCP throughput with 64 concurrent connections. Average RX and TX packet per second (avg_rx_pps and avg_tx_pps).
tep_rr Testing TCP long-connection with 1,024 concurrent connections. avg_rx_pps and avg_tx_pps.
tep_crr Testing TCP short-connection with 1,024 concurrent connections. | Connections per second (CPS), avg_rx_pps, and avg_tx_pps.
sockperf [4] udp Measuring average, p99, and p999 latencies within 300 seconds. udp_avg_lat, udp_p99_lat, and udp_p999_lat.
tep Testing average, p99, and p999 latencies within 300 seconds. tep_avg_lat, tep_p99_lat, and tcp_p999_lat.
ping ping Measuring a Round-Trip Time within 30 minutes. Minimum, maximum, and mean deviation of latencies.

6.1 Methodology

Experimental setup. We deployed and evaluated Tai Chi in
an laa$ production environment (VM scenario with Smart-
NICs as described in § 2.2). In this environment, DP services,
including networking and storage, along with CP tasks, run
on the SmartNICs to provide I/O performance acceleration
for VMs on the host. Detailed specifications of the Smart-
NICs, host compute nodes, and VMs are presented in Table 4.
Baseline. Existing scheduling systems [17, 21, 23, 29, 36]
designed for bare-metal environments to coordinate LC and
BE tasks cannot be effectively deployed on SmartNICs for
co-scheduling DP and CP, as they risk violating both DP
and CP SLOs (§ 3.3). We adopt the static allocation strategy
widely deployed in production environments as the base-
line. This static deployment we compare against serves as a
valid SOTA, because it includes numerous co-optimizations
in scheduling and resource management used in produc-
tion [26-28, 52], which are essential for our products to de-
liver market-leading performance. This approach dedicates
fixed CPU resources to DP (8 physical CPUs) and CP (4 phys-
ical CPUs) respectively, as evidenced by its broad adoption
in SmartNIC deployments [3, 16, 27, 52], thereby enabling a
rigorous apples-to-apples comparison.

Benchmarks and Metrics. To comprehensively evaluate
Tai Chi, we employ five benchmarks and two real-world
workloads. The synth_cp benchmark is an in-house synthetic
benchmark designed to emulate classic CP tasks that access

Table 4. Environment Configuration.

Types Hardware Configuration

Connection: PCle GEN3, 8 lanes

SmartNIC | Max physical network bandwidth: 200 Gb/s
CPU: 12 CPU

AMD EPYCTM Genoa 9T24

Host CPU: 96 CPU@2.70GHz in 2 sockets
Memory: 1TB DRAM

96 vCPUs, 384GB RAM

Linux kernel version: 5.10

NIC device: dual queue virtio-net x1
Block device: virtio-blk x4

VM

1000 —™— Baseline —A—Tai Chi

800+
6004
400

2004

Average execution time (ms)

O T T T T T T
1 4 8 32 128 512
The number of concurrent CP tasks

Figure 11. Evaluating average execution time under various
control-plane concurrency.

non-preemptible kernel routines. The synth_cp benchmark
supports high-concurrency multithreading to stress-test the
control plane. We tune the synth_cp to set the execution time
of each task to 50ms, simulating a typical CP task while ensur-
ing reproducible results. In addition, we evaluated the data
plane performance under Tai Chi using fio [45], netperf [33],
sockperf [42], and ping tool, with detailed configurations
and metrics summarized in Table 3.

Real workload. The MySQL [32] workload is an open-
source relational database management system known for
its high performance, reliability, and ease of use. We gener-
ated workloads using 192 sysbench [44] threads and mea-
sured both average and peak query throughput (max_query
and avg_query) alongside transaction number (max_trans
and avg_trans). The Nginx [34] workload serves as a high-
performance web server. To evaluate the performance of
Nginx as a web server, we utilized wrk [51] to measure aver-
age requests per second under 10,000 concurrent connections
for both HTTP and HTTPS protocols.

6.2 Control-Plane Performance

To quantify Tai Chi’s control-plane performance improve-
ments, we leverage the syn_cp benchmark to generate con-
current CP tasks distributed evenly across control-plane
CPUs. Data-plane CPU utilization is maintained at 30%, con-
sistent with production p99 case (§ 3.1).

Figure 11 shows the average CP task execution time un-
der varying concurrency levels. Tai Chi achieves 4X higher
performance than the baseline at 32 concurrent tasks. This

Tai Chi : A General High-Efficiency Scheduling Framework for SmartNICs in Hyperscale Clouds SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

improvement originates from Tai Chi’s virtualization of idle
DP CPU cycles as vCPUs, dynamically expanding available
compute resources for the control plane.

6.3 Hybrid Virtualization

In this experiment, we compare the unmodified static par-
titioned SmartNIC environment as baseline with three dis-
tinct virtualization implementations. (1) Tai Chi: the full
package with all aforementioned features and optimizations.
(2) Tai Chi-vDP (emulating type-1 virtualization): identical
to Tai Chi except that DP services run in vCPU contexts.
(3) Traditional type-2 virtualization (QEMU and KVM). By
contrasting the baseline with Tai Chi-vDP, we quantify the
performance benefits of executing the DP directly on phys-
ical CPUs. The comparison between the baseline and tra-
ditional type-2 virtualization evaluates performance gains
from eliminating device emulation overhead and guest OS.
The netperf (tcp_crr) benchmark and fio are utilized to
evaluate networking and storage DP performance (other test
cases exhibit analogous results). As illustrated in Figure 12
and Figure 13, the introduction of a virtualization layer in
the data plane results in an average 8% network throughput
overhead and 6% IOPS degradation in Tai Chi-vDP, because
of the VM-exit and the nested page table. Traditional type-
2 virtualization incurs substantially higher penalties, with
26% average network overhead and 25.7% IOPS degradation.
This disparity stems from traditional type-2 virtualization’s
requirement to exclusively occupy a CPU at least, which

700
600+
X
=500
®
S 400
£]
£ 300
Z 200
1004
0

[.-]Baseline Tai Chi) Tai Chi-vDPRXJ QEMU+KVM

BN

cps avg_rx_pps

avg_tx_pps

Figure 12. Evaluating network performance (connection
per second, average RX packets per second, and average TX
packets per second) by benchmark netperf (tcp_crr).

1200

1000

IOPS (K)

800

600

. S . % . y ,
Baseline Tai Chi Tai Chi-vDP QEMU+KVM

Figure 13. Evaluating storage IOPS performance by bench-
mark fio (fio_rw).

Table 5. RTT across three mechanisms.

Mechanism Min (ps) | Avg (ps) | Max (ps) | Mdev (ps)
Baseline 26 30 38 5
Tai Chi 27 30 38 5
Tai Chi w/o HW probe 32 37 115 9

o
o

[Judp_stream XX tcp_stream tep_rr 777 sockperf

o
S
L

0.95 4

o
©
S

Normalized performance (x)

rx_bw

@0
Q
o
25I
o
>
@

avg_tx_pps

avg_!

7]
Q
D.‘
5\
=
>
[

avg_rx_pps

udp_p999_lat
tcp_avg_lat

udp_p99_lat
tcp_p99_lat
tcp_p999_lat

udp_avg_lat

Figure 14. Performance comparison. Results are normalized
by the performance of the baseline.

[|Baseline }™:"{Tai Chi

< 1000
< 503.0 495.0
- o 388.3 382.0
c LK 44
Ke} EIE I]
5 LK L
S 100 4 LR P
2 BT SFaF
© 251 24.8
EREI B

= ¥ et 194 191
g }{}{} {}{=‘ {}{}{ 3-{:-{
s 104 EXEI B EI] ES
17} 4 < < < “ 4 < < <
[} EREI B o B
= L L L] LR
[L - - -
=1] L]]
(e} 1] F

max_query avg_query max_trans avg_trans

Figure 15. The performance of MySQL.

severely impacts CPU-constrained SmartNICs by competing
for data-plane CPU resources (only 8 data-plane CPUs) and
degrading performance. In comparison, Tai Chi incurs negli-
gible overhead (0.2% network and 0.06% storage overhead)
with comparison of the baseline, These results demonstrate
that hybrid virtualization implemented in Tai Chi preserves
near-native data plane efficiency.

6.4 Hardware Workload Probe

To evaluate the performance of the hardware workload probe
(§ 4.3), we employ the ping tool to compare Round-Trip
Time (RTT) across three scenarios: (1) the baseline, (2) Tai
Chi, and (3) Tai Chi without hardware workload probe (Tai
Chi w/o HW probe). As summarized in Table 5, Tai Chi
without the probe incurs 23%, 23.3%, 203%, and 80% overhead
in minimal RTT, average RTT, maximum RTT, and RTT
mean deviation compared to the baseline, whereas Tai Chi
achieves near-identical performance to the baseline. This
demonstrates that the hardware workload probe effectively
leverages I/O preprocessing windows to preemptively yield
vCPU resources, thereby hiding vCPU scheduling latency
and ensuring low-latency data plane operations.

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

2 l:IBase”ne [EETaiChi 7.50E+6 7.49E+6
8 <}{=‘
O 406
o 10° 3 E
» 1.84E+5 1.83E+5 2.50E+52.57E+5 L
by LK LK L3
o }{}{ :-{:-{:- {}{}
w 10° 4 E) I)
“J; < < < < < <
3 E) IR E
2 . L5t A
o , 42 42 L
3102 S e EI
; 25t Lt s
2 S ety oty
< 10°

https_conn short_conn long_conn

Figure 16. The performance of Nginx.

6.5 Data-Plane Performance

To comprehensively evaluate the impact of Tai Chi on data-
plane performance, we compare Tai Chi with the baseline us-
ing netperf (udp_stream, tcp_stream, and tcp_rr cases), sock-
perf (udp and tcp cases), and real-world workloads (MySQL
and Nginx).

Figure 14 presents the normalized results for netperf and
sockperf benchmarks. Tai Chi introduces an average over-
head of 0.6%, with a peak of 1.92% in the avg_tx_pps for
the tcp_stream benchmark. To evaluate the performance
of MySQL, we generate a load by 192 concurrent sysbench
threads. As illustrated in Figure 15, Tai Chi exhibits 1.56% av-
erage overhead (peaking at 1.63% in average query through-
put). Figure 16 shows the performance of Ngnix for HTTP
and HTTPS workloads under 10K concurrent connections.
The result shows Tai Chi incurs 0.51% average overhead (up
to 1% in short-connection scenarios) for average requests per
second. The DP performance overhead stems from cache and
TLB pollution caused by scheduling vCPUs onto DP CPUs.

Tai Chi incurs an average 0.7% data plane overhead (up
to 1.92%) while delivering substantial control-plane perfor-
mance improvements (§ 6.2). This efficiency stems from three
key design principles. (1) DP services operate directly on
physical CPUs, eliminating virtualization overhead. (2) The
hardware workload probe anticipates I/O workload arrivals,
enabling the vCPU scheduler to yield vCPUs in advance,
thereby ensuring low-latency DP services. (3) The vCPU
context breaks non-preemptible routines in CP tasks pre-
vents latency spikes for DP services.

6.6 Tai Chi in Production

Tai Chi has been deployed in one of the world’s largest cloud
service providers for over three years. No I/O SLO violations
were reported by users during Tai Chi upgrade and sustained
phases. Next, we present production data gathered from the
deployment of Tai Chi.

In high instance density environments, the control plane
must manage significantly more I/O devices, necessitating in-
creased CPU resources. We collected the average VM startup
times in production environments with and without Tai Chi
under such conditions. As shown in Figure 17, deployments
utilizing Tai Chi achieve a 3.1 reduction in average VM

Bang Di et al.

IS
I

—=— Production environment
—4A— Production environment withTai Chi

w
1

-
1

A A ————*

o

T T T T T T T

1 4

Normalized VM avg. startup time (x)
N
1

2 3
Instance density (x)

Figure 17. The average startup time in different instance
density. The x-axis shows the instance density normalized by
a normal instance density, and the y-axis show the average
VM startup time normalized by CP SLOs.

startup latency compared to production environments with-
out Tai Chi. This result demonstrates Tai Chi ’s ability to
ensure CP SLOs even under extreme CP contention.

7 Related Work

Preemptive scheduling. Many works [23, 24, 29] focus on
scheduling LC and BE tasks in a bare-metal scenario Shin-
juku [24] leverages Dune [6] to implement a single-address
space operating system that enables preemption at the mi-
crosecond scale. However, Shinjuku enforces preemption
every 5 microseconds, which introduces significant over-
head [13]. In contrast, Tai Chi designs the hybrid virtualiza-
tion and hardware workload probe to ensure low tail latency
for DP services.

User-level core reallocation. Many systems [4, 7, 14, 17, 25,
31, 36, 37, 39, 49] are built on thread or core reallocation to
enhance CPU efficiency. For instance, Perséphone [14] differ-
entiates between short-running and long-running requests,
keeping a limited number of cores idle to ensure low tail
latency for short-running tasks while selectively enabling
work conservation through work stealing to enhance CPU
efficiency. However, these scheduling methods incur addi-
tional CPU resource consumption, making them unsuitable
for deployment in resource-constrained environments like
SmartNICs.

Resource partitioning. Prior systems [18, 22, 38, 46] stat-
ically partition resources. While these approaches success-
fully achieve low tail latency, they often result in poor CPU
efficiency, as each partitioning must be provisioned with
enough resources to handle peak loads. This inefficiency
can lead to significant CPU waste [48], which is unaccept-
able in real production environments. Dynamic resource
partitioning has been explored in systems such as Tessella-
tion [11], PARTIES [8], SEDA [50], PerfIso [20], and Hera-
cles [30]. However, none of these systems are able to achieve
microsecond-level tail latency. Tai Chi introduces a hybrid
virtualization that schedules vCPUs at ps-scale time-slice

Tai Chi : A General High-Efficiency Scheduling Framework for SmartNICs in Hyperscale Clouds SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

granularity to schedule CP tasks during idle time slices in
DP services.

8 Discussions

Enhanced data-plane performance. Tai Chi proposed
in this paper primarily optimizes CP performance in high-
density environments. However, its architectural principles
can be inversely adapted to enhance DP throughput in low-
density scenarios where CP workloads demand reduced in-
tensity. As a proof of concept, we reallocated 50% of CP’s
physical CPUs to DP services through Tai Chi’s dynamic
resource partitioning, achieving 39% higher peak IOPS and
43% more connections per second. Crucially, despite the CP’s
reduced static resource allocation, its performance remains
consistent with baseline measurements, by leveraging idle
DP cycles.

An always-preemptible kernel-space context. It is a clas-
sic priority inversion issue in an operating system where
high-priority tasks cannot preempt low-priority kernel-space
tasks in real-time when non-preemptible kernel routines are
being executed in low-priority tasks. Tai Chi’s hybrid virtu-
alization framework introduces a universal scheduling mech-
anism for Linux kernels, featuring an always-preemptible
kernel-space execution context. This design specifically ac-
commodates low-priority tasks requiring kernel access while
maintaining deterministic responsiveness for high-priority
real-time workloads.

On-demand instruction-level auditing. After integrat-
ing hybrid virtualization into the Linux kernel, the vCPU
contexts in hybrid virtualization enable instruction-level au-
diting capabilities to monitor, log, and intercept privileged
instructions of target applications. Specifically, OS with hy-
brid virtualization supports flexible on-demand auditing for
arbitrary applications through CPU affinity management.
When auditing is required, the OS can instantiate vCPUs
and migrate target applications into the auditing domain via
CPU affinity configuration. Upon audit completion, applica-
tions are transparently migrated back to physical CPUs while
terminating the vCPUs. This instruction-level telemetry de-
livers granular data for security analysis and performance
optimization without persistent runtime overhead.

9 Future work

Further optimizations. The current approach in DP ser-
vices solely relies on internal statistics of empty polling
counts to release DP CPU resources, which still incurs in-
efficient CPU cycle utilization. Future optimizations could
integrate information from programmable hardware I/O ac-
celerators, such as packet metadata from preprocessing I/O
pipelines, to enable a multi-dimensional assessment of DP
CPU idle status and achieve more precise CPU resource
relinquishment. Additionally, we consider cache and TLB
isolation techniques to eliminate performance degradation

on DP services caused by scheduling CP tasks on DP CPUs,
further enhancing system performance.

Tai Chi as a general-purpose framework. In this paper,
we leverage Tai Chi to enhance scheduling efficiency in
SmartNIC environments. While our implementation focuses
on this specific use case, we posit that with architecture-
aware tailoring and domain-specific optimizations, Tai Chi
can serve as a general-purpose scheduling framework in any
system sharing SmartNIC’s fundamental constraints, partic-
ularly those requiring coordinated management of heteroge-
neous workloads. A prime example would be co-scheduling
latency-sensitive online services and batch-oriented offline
tasks within resource-constrained edge devices. We leave
this work for future research.

10 Conclusions

We introduce Tai Chi, an innovative method that utilizes hy-
brid virtualization to seamlessly integrate virtual CPUs and
physical CPUs within the same operating system. This seam-
less integration equipped with a hardware workload probe
transparently enhances SmartNIC CPU utilization without
adversely affecting DP performance. Additionally, Tai Chi
unifies IPIs between vCPU and physical CPUs, enabling to
represent vCPUs as native CPUs within a single OS. This
transparency supports deploying Tai Chi on CP tasks with-
out code modifications.

11 Acknowledgements

We thank our shepherd and the anonymous reviewers for
the insightful comments that improved the quality of this

paper.

References

[1] AMD. Technology (iommu) specification, 2007.

[2] Microsoft Azure. https://azure.microsoft.com/en-us.

[3] W Bai, Abdeen SSainul, A Agrawal, Attre KKumar, P Bahl, A Bhagat,
G Bhaskara, T Brokhman, L Cao, A Cheema, et al. Empowering azure
storage with rdma. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). USENIX Association, 2023.

[4] S. Barghi. uthreads: Concurrent user threads in c++(and c). https:
//github.com/samanbarghi/uThreads.

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,

Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen

and the art of virtualization. ACM SIGOPS operating systems review,

37(5):164-177, 2003.

Adam Belay, Andrea Bittau, Ali José Mashtizadeh, David Terei, David

Maziéres, and Christos Kozyrakis. Dune: Safe user-level access to

privileged CPU features. In Chandu Thekkath and Amin Vahdat,

editors, 10th USENIX Symposium on Operating Systems Design and

Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012,

pages 335-348. USENIX Association, 2012.

[7] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. IX: A protected dataplane operating
system for high throughput and low latency. In Jason Flinn and Hank
Levy, editors, 11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014,
pages 49-65. USENIX Association, 2014.

[6

—

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

(8]

[12

—

(13]

(14]

(15

—

(16]

(17]

(18]

(19]

Shuang Chen, Christina Delimitrou, and José F. Martinez. PARTIES:
qos-aware resource partitioning for multiple interactive services. In
Iris Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck,
editors, Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, pages 107-120.
ACM, 2019.

Alibaba Cloud. https://www.alibabacloud.com.

Alibaba Cloud. A detailed explanation about alibaba cloud
cipu. https://www.alibabacloud.com/blog/a-detailed-explanation-
about-alibaba-cloud-cipu_599183.

Juan A. Colmenares, Gage Eads, Steven A. Hofmeyr, Sarah Bird, Miquel
Moret6, David Chou, Brian Gluzman, Eric Roman, Davide B. Bartolini,
Nitesh Mor, Krste Asanovic, and John Kubiatowicz. Tessellation: refac-
toring the OS around explicit resource containers with continuous
adaptation. In The 50th Annual Design Automation Conference 2013,
DAC ’13, Austin, TX, USA, May 29 - June 07, 2013, pages 76:1-76:10.
ACM, 2013.

Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh, and Georgios
Koloventzos. Arm virtualization: performance and architectural impli-
cations. ACM SIGARCH Computer Architecture News, 44(3):304-316,
2016.

Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias,
Boon Thau Loo, Linh Thi Xuan Phan, and Irene Zhang. When idling
is ideal: Optimizing tail-latency for heavy-tailed datacenter workloads
with perséphone. In Robbert van Renesse and Nickolai Zeldovich,
editors, SOSP "21: ACM SIGOPS 28th Symposium on Operating Systems
Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021, pages
621-637. ACM, 2021.

Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias,
Boon Thau Loo, Linh Thi Xuan Phan, and Irene Zhang. When idling
is ideal: Optimizing tail-latency for heavy-tailed datacenter workloads
with perséphone. In Robbert van Renesse and Nickolai Zeldovich,
editors, SOSP "21: ACM SIGOPS 28th Symposium on Operating Systems
Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021, pages
621-637. ACM, 2021.

DPDK. Dpdk interrupt mode. https://doc.dpdk.org/guides/prog_guide/
poll_mode_drv.html.

Daniel Firestone, Andrew Putnam, Sambrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian M. Caulfield, Eric S. Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen Liu,
Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel, Tejas
Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivas-
tava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert G. Greenberg. Azure accel-
erated networking: Smartnics in the public cloud. In Sujata Banerjee
and Srinivasan Seshan, editors, 15th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2018, Renton, WA, USA, April
9-11, 2018, pages 51-66. USENIX Association, 2018.

Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.
Caladan: Mitigating interference at microsecond timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2020, Virtual Event, November 4-6, 2020, pages 281-297. USENIX
Association, 2020.

Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C. Snoeren. Smart-
nic performance isolation with fairnic. In Henning Schulzrinne and
Vishal Misra, editors, SSGCOMM °20: Proceedings of the 2020 Annual
conference of the ACM Special Interest Group on Data Communication on
the applications, technologies, architectures, and protocols for computer
communication, Virtual Event, USA, August 10-14, 2020, pages 681-693.
ACM, 2020.

Jim Henrys. As cloud service providers consider their investment

strategies and technology plans for the future, ipus offer a path to
accelerate and financially optimize cloud services.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Bang Di et al.

Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj
Syamala, Vivek R. Narasayya, Herodotos Herodotou, Paulo Tomita,
Alex Chen, Jack Zhang, and Junhua Wang. Perfiso: Performance
isolation for commercial latency-sensitive services. In Haryadi S.
Gunawi and Benjamin C. Reed, editors, 2018 USENIX Annual Technical
Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018, pages
519-532. USENIX Association, 2018.

Rishabh R. Iyer, Musa Unal, Marios Kogias, and George Candea. Achiev-
ing microsecond-scale tail latency efficiently with approximate optimal
scheduling. In Jason Flinn, Margo L. Seltzer, Peter Druschel, Antoine
Kaufmann, and Jonathan Mace, editors, Proceedings of the 29th Sym-
posium on Operating Systems Principles, SOSP 2023, Koblenz, Germany,
October 23-26, 2023, pages 466—481. ACM, 2023.

Seyyed Ahmad Javadi, Amoghavarsha Suresh, Muhammad Wajahat,
and Anshul Gandhi. Scavenger: A black-box batch workload resource
manager for improving utilization in cloud environments. In Proceed-
ings of the ACM Symposium on Cloud Computing, SoCC 2019, Santa
Cruz, CA, USA, November 20-23, 2019, pages 272-285. ACM, 2019.
Yuekai Jia, Kaifu Tian, Yuyang You, Yu Chen, and Kang Chen. Skyloft:
A general high-efficient scheduling framework in user space. In Pro-
ceedings of the ACM SIGOPS 30th Symposium on Operating Systems
Principles, pages 265-279, 2024.

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazieres, and Christos Kozyrakis. Shinjuku: Preemptive sched-
uling for usecond-scale tail latency. In Jay R. Lorch and Minlan Yu,
editors, 16th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2019, Boston, MA, February 26-28, 2019, pages
345-360. USENIX Association, 2019.

Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,
Arvind Krishnamurthy, and Thomas E. Anderson. TAS: TCP accel-
eration as an OS service. In George Candea, Robbert van Renesse,
and Christof Fetzer, editors, Proceedings of the Fourteenth EuroSys Con-
ference 2019, Dresden, Germany, March 25-28, 2019, pages 24:1-24:16.
ACM, 2019.

Qiang Li, Lulu Chen, Xiaoliang Wang, Shuo Huang, Qiao Xiang,
Yuanyuan Dong, Wenhui Yao, Minfei Huang, Puyuan Yang, Shanyang
Liu, et al. Fisc: a large-scale cloud-native-oriented file system. In 21st
USENIX Conference on File and Storage Technologies (FAST 23), pages
231-246, 2023.

Xing Li, Xiaochong Jiang, Ye Yang, Lilong Chen, Yi Wang, Chao Wang,
Chao Xu, Yilong Lv, Bowen Yang, Taotao Wu, et al. Triton: A flexible
hardware offloading architecture for accelerating apsara vswitch in
alibaba cloud. In Proceedings of the ACM SIGCOMM 2024 Conference,
pages 750-763, 2024.

Xing Li, Xiaochong Jiang, Ye Yang, Lilong Chen, Tianyu Xu, Chao Xu,
Longbiao Xiao, Fengmin Shi, Yi Wang, Taotao Wu, et al. Poster: Tri-
ton: Accelerating vswitch with flexibility through hardware assisting
not bypassing software. In Proceedings of the ACM SIGCOMM 2023
Conference, pages 1156-1158, 2023.

Jiazhen Lin, Youmin Chen, Shiwei Gao, and Youyou Lu. Fast core
scheduling with userspace process abstraction. In Proceedings of the
ACM SIGOPS 30th Symposium on Operating Systems Principles, pages
280-295, 2024.

David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. Heracles: improving resource effi-
ciency at scale. In Deborah T. Marr and David H. Albonesi, editors,
Proceedings of the 42nd Annual International Symposium on Computer
Architecture, Portland, OR, USA, June 13-17, 2015, pages 450-462. ACM,
2015.

Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve D. Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena E. Olson, Erik
Rubow, Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius,

Tai Chi : A General High-Efficiency Scheduling Framework for SmartNICs in Hyperscale Clouds SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Xi Wang, and Amin Vahdat. Snap: a microkernel approach to host [44] sysbench. https://github.com/akopytov/sysbench.

networking. In Tim Brecht and Carey Williamson, editors, Proceedings [45] Flexible I/O tester. https://fio.readthedocs.io/en/latest/fio_doc.html.
of the 27th ACM Symposium on Operating Systems Principles, SOSP [46] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls, Kate-
2019, Huntsville, ON, Canada, October 27-30, 2019, pages 399-413. ACM, rina J. Argyraki, Sylvia Ratnasamy, and Scott Shenker. Resq: Enabling
2019. slos in network function virtualization. In Sujata Banerjee and Srini-

[32] MySQL. https://github.com/mysql/mysql-server. vasan Seshan, editors, 15th USENIX Symposium on Networked Systems

[33] netperf. https://hewlettpackard.github.io/netperf;. Design and Implementation, NSDI 2018, Renton, WA, USA, April 9-11,

[34] nginx. https://github.com/nginx/nginx. 2018, pages 283-297. USENIX Association, 2018.

[35] NVIDIA. Nvidia bluefield dpu-3. https://www.nvidia.com/content/ [47] Richard Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando
dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia- C. M. Martins, Andrew V. Anderson, Steven M. Bennett, Alain Kagi,
bluefield-3-dpu.pdf. Felix H. Leung, and Larry Smith. Intel virtualization technology. Com-

[36] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and puter, 38(5):48-56, 2005.

Hari Balakrishnan. Shenango: Achieving high CPU efficiency for [48] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
latency-sensitive datacenter workloads. In Jay R. Lorch and Minlan heimer, Eric Tune, and John Wilkes. Large-scale cluster management
Yu, editors, 16th USENIX Symposium on Networked Systems Design and at google with borg. In Laurent Réveillére, Tim Harris, and Maurice
Implementation, NSDI 2019, Boston, MA, February 26-28, 2019, pages Herlihy, editors, Proceedings of the Tenth European Conference on Com-
361-378. USENIX Association, 2019. puter Systems, EuroSys 2015, Bordeaux, France, April 21-24, 2015, pages

[37] Heidi Pan, Benjamin Hindman, and Krste Asanovic. Composing paral- 18:1-18:17. ACM, 2015.
lel software efficiently with lithe. In Benjamin G. Zorn and Alexander [49] J. Robert von Behren, Jeremy Condit, Feng Zhou, George C. Necula,
Aiken, editors, Proceedings of the 2010 ACM SIGPLAN Conference on and Eric A. Brewer. Capriccio: scalable threads for internet services.
Programming Language Design and Implementation, PLDI 2010, Toronto, In Michael L. Scott and Larry L. Peterson, editors, Proceedings of the
Ontario, Canada, June 5-10, 2010, pages 376-387. ACM, 2010. 19th ACM Symposium on Operating Systems Principles 2003, SOSP 2003,

[38] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Bolton Landing, NY, USA, October 19-22, 2003, pages 268-281. ACM,
Krishnamurthy, Thomas E. Anderson, and Timothy Roscoe. Arrakis: 2003.

The operating system is the control plane. In Jason Flinn and Hank [50] Matt Welsh, David E. Culler, and Eric A. Brewer. SEDA: an architecture
Levy, editors, 11th USENIX Symposium on Operating Systems Design for well-conditioned, scalable internet services. In Keith Marzullo
and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014, and Mahadev Satyanarayanan, editors, Proceedings of the 18th ACM
pages 1-16. USENIX Association, 2014. Symposium on Operating System Principles, SOSP 2001, Chateau Lake

[39] J. Reinders. Intel threading building blocks: Outfitting c++ for multi- Louise, Banff, Alberta, Canada, October 21-24, 2001, pages 230-243.
core processor parallelism, 2007. ACM, 2001.

[40] Chris Schlaeger. Aws ec2 virtualization: Introducing nitro. AWS [51] wrk. https:/github.com/wg/wrk.

Summit, 2018. [52] Weidong Zhang, Erci Xu, Qiuping Wang, Xiaolu Zhang, Yuesheng

[41] Amazon Web Services. https://aws.amazon.com. Gu, Zhenwei Lu, Tao Ouyang, Guanqun Dai, Wenwen Peng, Zhe Xu,

[42] Mellanox sockperf. https://github.com/Mellanox/sockperf. et al. What’s the story in {EBS} glory: Evolutions and lessons in

[43] The Storage Performance Development Kit (SPDK). https:/spdk.io. building cloud block store. In 22nd USENIX Conference on File and

Storage Technologies (FAST 24), pages 277-291, 2024.

