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Co-running GPU kernels on a single GPU can provide high system throughput and improve hardware uti-

lization, but this raises concerns on application security. We reveal that translation lookaside buffer (TLB)

attack, one of the common attacks on CPU, can happen on GPU when multiple GPU kernels co-run. We in-

vestigate conditions or principles under which a TLB attack can take effect, including the awareness of GPU

TLB microarchitecture, being lightweight, and bypassing existing software and hardware mechanisms. This

TLB-based attack can be leveraged to conduct Denial-of-Service (or Degradation-of-Service) attacks. Further-

more, we propose a solution to mitigate TLB attacks. In particular, based on the microarchitecture properties

of GPU, we introduce a software-based system, TLB-pilot, that binds thread blocks of different kernels to

different groups of streaming multiprocessors by considering hardware isolation of last-level TLBs and the

application’s resource requirement. TLB-pilot employs lightweight online profiling to collect kernel infor-

mation before kernel launches. By coordinating software- and hardware-based scheduling and employing

a kernel splitting scheme to reduce load imbalance, TLB-pilot effectively mitigates TLB attacks. The result

shows that when under TLB attack, TLB-pilot mitigates the attack and provides on average 56.2% and 60.6%

improvement in average normalized turnaround times and overall system throughput, respectively, compared

to the traditional Multi-Process Service based co-running solution. When under TLB attack, TLB-pilot also

provides up to 47.3% and 64.3% improvement (41% and 42.9% on average) in average normalized turnaround

times and overall system throughput, respectively, compared to a state-of-the-art co-running solution for

efficiently scheduling of thread blocks.
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1 INTRODUCTION

With the continuous increase of GPU compute density, there is a growing need of sharing GPU
among multiple applications to avoid underutilization of GPU resources [6, 24, 31, 39–41, 45, 49, 50,
55]. However, co-running GPU kernels on a single GPU raises concerns on application security.
Recent efforts reveal that buffer overflow attack [17], side channel attack [34], and covert chan-
nel attack [33] can happen when GPU kernels co-run. Co-running GPU kernels demands strong
isolation between different kernels to prevent those potential attacks.

In this article, we reveal that the translation lookaside buffer (TLB) attack can happen on
GPU when multiple GPU kernels co-run. We show that it is highly possible that a malicious GPU
kernel intentionally constructs severe contentions on shared TLB to cause dramatic performance
degradation of a co-running kernel. The performance degradation can be leveraged to conduct
Denial-of-Service (or Degradation-of-Service) attacks.

Unlike TLB attacks on CPU, TLB attacks on GPU for co-running kernels must meet a couple
of conditions or principles, imposed by unique GPU architecture. First, the TLB attack should be
based on the awareness of TLB microarchitecture, particularly how TLBs are shared and isolated
between streaming multiprocessors (SMs) on GPU. Second, the attack kernel has to be light-
weight to enable co-running of kernels on GPU. The hardware scheduler on GPU parallels the
execution of attack and benign user kernels, only when GPU resource (e.g., registers and thread
blocks) consumed by the two kernels is available on GPU. Otherwise, the execution of the two
kernels is serialized, which makes the attack invalid. The attack kernel with low requirements on
hardware resource has high applicability to attack benign kernels. The requirement of the light-
weight attack kernel means that traditional expensive TLB attack approaches [48] cannot work on
GPU. Third, the attack kernel must bypass software and hardware mechanisms on GPU to work.
These mechanisms include large TLB reach [8], address randomization, and compiler optimization,
which was introduced into GPU to enable load balance and high performance.

We show how a TLB attack can happen with a delicate design. In particular, we introduce a small
GPU kernel that allocates a number of memory blocks scattered sparsely in the address space, then
accesses them to evict page table entries (PTEs) in L2 TLBs. Those memory blocks are carefully
chosen and widely spread such that accessing them can cover most PTEs in L2 TLB according to
TLB microarchitecture, meanwhile beating the effect of address randomization. The attack kernel
also considers the impact of hardware-managed scheduling of thread blocks on SMs, and shares L2
TLB between thread blocks of the attack and benign kernels. With such a TLB attack, we observe
up to 3.9× performance loss from a benign user kernel.

After demonstrating the potential TLB attacks, we propose a solution to mitigate TLB attacks
on GPU. Unlike L1/L2 caches that can be manipulated using specific instructions (e.g., flush and
load instructions) to address cache contentions [30], TLB is a hardware component whose details
are typically not disclosed, and there is no instruction to directly manipulate TLB. The previous
work [23, 32, 52] and our benchmarking results reveal that there are multiple last-level TLBs on
GPU. Each last-level TLB is shared between multiple SMs forming an SM group, but across SM
groups, there is no TLB sharing. Based on the preceding microarchitecture properties, we intro-
duce a software-based system (named TLB-pilot) that binds thread blocks of different kernels to
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different SM groups by considering the isolation of last-level TLBs and the application’s resource
requirements. TLB-pilot avoids or mitigates sharing of last-level TLBs between different GPU ker-
nels and hence mitigates TLB attacks. TLB-pilot is a software-based solution directly deployable
on GPU without the need of hardware modification.

However, building the preceding software-based scheduling system on GPU to mitigate TLB at-
tacks is not trivial. First, the software-based scheduling must coordinate with application-agnostic,
hardware-based scheduling, which is challenging. We only have primitive knowledge on the pro-
prietary hardware-based scheduling mechanism. Without detailed knowledge on the hardware-
based scheduling, the software-based schedule must leverage the scheduling results from hard-
ware to bind thread blocks of a kernel with specific SM groups to enable TLB isolation. Second,
mitigating TLB attacks must have minimum impact on the performance of benign GPU kernels.
This indicates that we should avoid complicated algorithms or add extra functionality into the
GPU kernels that can impair the performance. In addition, we should avoid low SM utilization
when applying the software-based scheduling.

Existing works schedule thread blocks of co-running kernels [7, 10, 53, 54, 61], aiming to en-
hance data locality or enable kernel preemption for prioritized scheduling. Those efforts can be
roughly classified into two categories: persistent thread-based approaches [7, 10, 54, 61] and SM-
centric scheduling [53]. When applying them to alleviate TLB contentions, we face fundamental
limitations.

The persistent thread-based approach lacks hardware information, which is essential to mitigate
TLB attacks. In particular, the persistent thread-based approach creates a small number of threads
that simultaneously run on GPU. These threads stay alive throughout the execution of co-running
kernels and continuously fetch and execute tasks (thread blocks) from one or more task queues.
This approach suffers from frequent synchronization between CPU and GPU to transfer tasks,
which brings performance overhead. More importantly, this approach binds persistent threads
with tasks while leaving the binding between persistent threads and SMs to proprietary hardware
and runtime. As a result, persistent threads do not have sufficient knowledge on TLB microarchi-
tecture, which is necessary to enable isolation between thread blocks of attack and benign kernels.
The SM-centric scheduling [53] relies on expensive offline analysis (e.g., thread affinity analysis)
and online analysis through a slow high-climbing algorithm to decide which thread blocks should
go to which SMs, which is difficult to adopt in a production environment.

TLB-pilot addresses the preceding challenges and avoids the limitation in the existing ap-
proaches. TLB-pilot employs lightweight online profiling to collect kernel information before ker-
nel launches to decide how the binding should happen. The online profiling can be lightweight,
because we leverage offline performance modeling and limited knowledge on hardware scheduling,
and request the binding at the granularity of SM groups (instead of SMs as in the existing efforts).
The process of deciding the binding considers TLB microarchitecture to isolate TLBs between
co-running kernels. To enforce the binding at runtime and avoid incorrect binding because of
application-agnostic, hardware scheduling, TLB-pilot manipulates the launching of thread blocks
and asks thread blocks to coordinatively terminate themselves to meet the binding goal. In general,
our method is lightweight but is microarchitecture-aware without the necessity of using expensive
online analysis.

Furthermore, we identify a load imbalance problem encountered when mitigating TLB attack.
In particular, when one kernel is terminated while the other co-running kernel is not, the co-
running kernel cannot leverage the idling SMs released by the terminated kernel, because of the
binding between SM groups and thread blocks to mitigate TLB attacks. To solve this problem, TLB-
pilot introduces a kernel splitting mechanism. This mechanism splits the long-running kernel into
two small kernels, one that runs in parallel with the short-running kernel with the awareness of
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mitigating TLB attack, and another that runs after the termination of the short-running kernel and
utilizes all SMs.

This work makes following contributions

• We demonstrate the possibility of mounting TLB attacks when co-running GPU kernels.
• We propose TLB-pilot, a software-based scheduling system to mitigate TLB attack without

hardware modification. We make TLB-pilot open source [5].
• We extensively evaluate TLB-pilot with a set of representative benchmarks. We show that

when co-running benign user kernels with the TLB attack kernel, TLB-pilot provides an
average 56.2% and 60.6% improvement in average normalized turnaround times (ANTT)

and overall system throughput (STP), respectively, compared to the traditional Multi-

Process Service (MPS)-based co-running solution. When under TLB attack, TLB-pilot also
provides up to 47.3% and 64.3% improvement (41% and 42.9% on average) in ANTT and STP,
respectively, compared to a state-of-the-art co-running solution for efficient scheduling of
thread blocks.

2 BACKGROUND AND MOTIVATION

2.1 Background

Address translation on GPU. Although the designs of the virtual memory subsystem for commercial
GPUs such as NVIDIA, AMD, and Intel are not publicly available, it is widely accepted that contem-
porary GPUs support TLB-based address translation [23, 32, 52]. The virtual memory subsystem
translates virtual addresses at page granularity by storing the virtual-to-physical mappings in a
multi-level page table that resides in GPU’s global memory. For each virtual address, GPU needs
to perform a page table walk, which traverses each level of the page table to locate the physi-
cal page frame. For a four-level page table, each address translation involves four global memory
accesses. To reduce this nontrivial overhead, TLBs are used to cache PTEs. Due to the lockstep
execution model, a single instruction in a warp can generate up to 32 address translation requests.
If these requests miss the TLBs, a total of 128 memory accesses is required to complete the address
translation of a single SIMT instruction. Therefore, address translation is a first-order performance
concern on GPU, especially when multiple kernels are run concurrently [9].

Dissecting TLB structure of GPUs. The existing efforts perform fine-grained benchmarking to
unveil the TLB structure of GPUs [23, 32, 52]. They use the following common approach. A single-
threaded GPU kernel traverses a continuous memory block with a specified stride and distance,
performing pointer-chasing-based data accesses. By timing the cycles of accessing the same mem-
ory addresses between two consecutive runs, we can differentiate TLB hits and misses, and con-
sequently identify the number of TLB levels, TLB reach, and page size of each level. To eliminate
the impact of data cache misses, the accessed data is minimized so that it can be contained in the
L2 cache. In this way, we guarantee that any latency increases during measurements are purely
incurred by TLB misses.

In multi-level TLBs, lower-level TLBs are often shared among multiple SMs. We use the
approach presented in the work of Karnagel et al. [25] to study the last-level TLBs. First, N pages
(the number of pages that fit in one last-level TLB) on SMi (indicating the i-th SM) are accessed.
Second, another set of N pages on SMj are accessed. Then, the first N pages are accessed again on
SMi , and a low cycle count means no sharing between SMi and SMj , whereas a high cycle count
indicates TLB sharing (because SMj evicts the entries loaded by SMi ). By exhaustively testing all
possible combinations of SMs, we can obtain the overall TLB sharing structure. Table 1 shows
the benchmarking results on GTX 1080 Ti (the Pascal architecture). The 28 SMs on this GPU are
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Table 1. TLBs on GTX 1080 Ti

L1 TLB
PTE size 2 MB

TLB reach 32 MB
Miss cost 9 cycles

L2 TLB
PTE size 32 MB

TLB reach 2048 MB
Miss cost 110 cycles

L2 TLB
topology
(SM IDs)

Group 1 0 6 12 18 24
Group 2 1 7 13 19 25
Group 3 2 8 14 20 26
Group 4 3 9 15 21 27
Group 5 4 10 16 22
Group 6 5 11 17 23

divided into six groups, with the first four groups each containing 5 SMs and the last two groups
each containing 4 SMs, and each group shares one last-level (L2) TLB.

Co-running GPU kernels. MPS and stream are techniques to co-run GPU kernels on CUDA. MPS
was introduced in CUDA 7 and can co-run kernels from different processes; stream was introduced
in CUDA 1 and can co-run kernels from the same process. Unless indicated otherwise, we use MPS
to co-run user kernel and attack kernel.

2.2 Motivation

Threat model. In a public cloud, cloud vendors share GPU between users to improve resource uti-
lization. For example, the Amazon Cloud provides the Amazon Elastic Graphics service [2] based
on kernel co-running to provide low-cost services to users. A user can launch a instance (a virtual
machine) to use GPU. The instance leverages “API-forwarding” by intercepting OpenGL calls [3]
(CUDA has a similar API-forwarding solution named rCUDA [42]) and sending them to remote
physical GPU. In this way, each instance has its own virtual GPU. When the adversary and the
benign user share a same physical GPU, the adversary can construct an instance that deploys a
TLB attack kernel depicted in Section 3 to attack benign kernels. The existing work [25] shows a
real incident. Data processing in a large-scale database encounters dramatic performance degrada-
tion (13×) when running workloads with irregular hash table accesses and random sampling on the
same GPU. In conclusion, the TLB contention attack is feasible and hazardous in real GPU-sharing
environments.

TLB attacks based on kernel co-running can become serious and hence deserve more attention
for four reasons. First, such an attack is easy to deploy. Launching the attack is as easy as
launching a regular instance. The attack easily achieves Denial-of-Service. Second, such an attack
can be easily combined with other attacks to corrupt privacy. For example, the overflow detection
based on the canary mechanism must rapidly scan all allocated memories to verify canaries [17].
The TLB attack slows down the scan (overflow detection). The slow scan allows the overflow
attack to escape detection because the attack has more time to recover canaries between two
adjacent scans to disable the canary mechanism. The TLB attack can also degrade application
performance to help the adversary build a more stable covert channel to strike attacks [33]. Third,
all GPU programs, especially those with a large memory footprint and random memory accesses
(e.g., decision tree references), are subject to the threat of TLB attacks, because each program
must frequently use TLB for address translation. Fourth, detecting TLB attacks on GPU is difficult.
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To detect traditional Denial-of-Service attacks, the detection monitors resource consumption of
each program and kills the program when its resource consumption is large [38]. However, the
TLB attacks on GPU consume little resources, which makes it harder to detect. Other existing
works [14, 22, 57] on CPU introduce extra operations into TLB, which also stalls GPU threads and
causes significant performance degradation.

All GPUs (including the most recent ones, e.g., Kepler, Pascal, Volta, Turing, and Ampere archi-
tectures) can suffer from those attacks, because each of them has multiple SM groups in a single
GPU, and within each group, multiple SMs share L2 TLB. CUDA MPS on recent Post-Volta GPUs
only provides isolated virtual address space but still shares TLB between SMs and hence suffers
from the TLB attacks as well.

There are a few existing works defending against TLB attacks on CPU [16]. However, they
cannot be applied to GPU. The existing work uses static TLB partition and random-fill TLB (i.e.,
randomly replacing TLB entries). Both techniques can cause significant TLB misses on GPU with
massive thread-level parallelism, which loses performance. In conclusion, no existing work can
defend against the TLB attack on GPU. We must have a mechanism to effectively address it.

3 TLB ATTACK ON GPU

Threads can be stalled due to TLB misses. Because of the lockstep execution model of GPUs, the
stall of one thread can block all other threads in the same warp, causing significant performance
degradation. The TLB contention can happen if multiple kernels are co-located on a group of SMs
that share the same L2 TLB. Based on this observation, a malicious adversary can leverage the
preceding microarchitecture feature to mount performance degradation attacks on benign kernels,
which is discussed in the following.

Basic ideas of TLB attack. We present an attack kernel that continuously evicts L2 TLB entries
to intentionally interfere with co-running kernels on GPU. The attack kernel allocates a number
of small memory blocks that belong to different PTEs and are not consecutive. The attack kernel
then launches threads to concurrently access these memory blocks to effectively evict PTEs. When
a benign kernel co-runs with the attack kernel, address translation requests of the benign kernel
miss TLB. Finally, many of these requests are queued to be serviced by a page table walker, which
significantly degrades performance of the benign kernel. L1 TLB can be exploited in the same way,
but its performance influence is negligible, because the 9-cycle L1 TLB miss penalty is relatively
small compared to the 110-cycle L2 TLB miss penalty [25]. Therefore, we focus on an attack imple-
mentation based on L2 TLB contention in the following discussions. Figure 1 depicts the algorithm
of the attack.

Implementation details. The GPU used in our experiments is GTX 1080 Ti. The reach of each L2
TLB on this GPU is 2 GB. The reach of each PTE is 32 MB, and each L2 TLB consists of 64 PTEs.
The attack kernel allocates a number of memory blocks that are small and scattered sparsely in the
virtual address space, which guarantees the effectiveness of evicting PTEs in L2 TLBs (lines 19–27
in Figure 1). In particular, the attack kernel allocates one 2-MB memory block (named the attack

memory block) and 15 other 2-MB memory blocks (named the padding memory blocks) in tandem.
These 16 memory blocks (32 MB) form a group and use one PTE. By repeating the preceding
process and releasing all the padding memory blocks at last, we obtain a set of attack memory
blocks, belonging to different pages (d_arr in Figure 1).

To cover all PTEs in an L2 TLB (reaching 2-GB address space), we need to allocate 64 groups
(2 GB / 32 MB = 64). The size of all attack memory blocks is only 128 MB (i.e., 64 * 2 MB). Note that
the size of each attack memory block is the same as that of each padding memory block (2 MB).
This allows the attack kernel to avoid the impact of randomized address allocation introduced in
recent GPU drivers. With the randomized address allocation, memory blocks of the same size and
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Fig. 1. Code snippet of the attack kernel.

continuous allocation tend to be allocated into the same memory pages. By allocating a specific
number (15) of padding memory blocks of the same size between two attack memory blocks, the
two attack memory blocks are assigned to two different PTEs. Using this method, we can scatter
different attack memory blocks into different PTEs. Figure 3 further depicts the memory allocation.

Using the preceding method, the attack kernel is very lightweight and consumes very few GPU
resources. Hence, it is highly likely to be able to co-run the attack kernel with another kernel in
GPU-sharing environments.

Besides the preceding method, we use the following techniques to maximize attacks. First, the
attack kernel launches n thread blocks to perform TLB eviction, where n is the number of SMs
in GPU. The reason is as follows. There is TLB isolation between SM groups. To achieve effective
attack, all SM groups should be covered. Since the GPU hardware scheduler uses a loose round-
robin strategy [33] to schedule thread blocks to SMs, launching n thread blocks can roughly make
each SM own a thread block, and can cover all SM groups to perform TLB attack. Second, PTE
evictions are performed concurrently by all threads. Each thread repeatedly accesses all attack
memory blocks (lines 1–11 in Figure 1) to maximize attacks. Third, we use special PTX assembly
to access memory (lines 6 and 7 in Figure 1). This is used to bypass the L1 cache, which is virtually
indexed and does not use TLB. Fourth, we avoid compiler optimization by adding line 8, because
the compiler optimization can change the order of memory accesses and degrade the effectiveness
of attack.

Performance under attack. We study the performance degradation of benign user kernels when
co-running them with the attack kernel. We use those benchmarks listed in Table 3 as user ker-
nels. For each user kernel, we use MPS to co-run it with the attack kernel. We also develop a
“malfunctioned” attack kernel. This kernel is the same as the attack kernel, except it evicts much
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Fig. 2. Normalized execution time of user kernels under the attack of the attack kernel and malfunctioned

attack kernel. The numbers of threads per thread block and evicted PTEs vary in this study. The prefixes A-

and M- indicate the cases where the attack and malfunctioned kernels co-run with user kernels, respectively.

The suffix numbers represent the number of threads per thread blocks or memory size reached by evicted

PTEs. For example, in Figure 2(b), the memory size reached by evicted PTEs varies from 128 to 320 MB for the

malfunctioned attack kernel and from 2 to 5 GB for the attack kernel. In Figure 2(a), the number of threads

for the attack kernel and malfunctioned attack kernel varies from 128 to 224.

fewer PTEs of TLB. In particular, the malfunctioned attack kernel uses the same number of attack
memory blocks as the attack kernel, but those attack memory blocks are consecutively allocated.
Accessing them in the malfunctioned attack kernel evicts at most 10 PTEs in an L2 TLB. Com-
paring the performance of user kernels under the attack of the attack kernel and malfunctioned
attack kernel, we can highlight the performance degradation caused by L2 TLB contention, not by
other resource contention (e.g., the contention on registers). Figure 2 shows the performance of
user kernels under the attack.

In our GPU, an L2 TLB has 64 PTEs (reaching 2 GB). To study association between the number
of evicted PTEs and performance degradation, we fix the number of threads per thread block for
the attack and malfunctioned attack as 128 and increase the number of evicted PTEs (from 2 to
5 GB) in each thread of the attack kernel (Figures 2(b)). We also change the number of threads per
thread block but fix the number of evicted PTEs (reaching 4 GB) and study impacts of changing
number of threads on the performance of user kernels. Figure 2 shows results (execution time)
normalized by the execution time of kernels running alone.

We have two observations from Figure 2. First, the user kernels suffer from serious perfor-
mance degradation. The performance degradation becomes larger when we increase the number
of threads or the reach of evicted PTEs. The largest performance degradation is 3.9× (see the bench-
mark MVT under the attack of the attack kernel with 5-GB reach of the evicted PTEs (A-5120) in
Figure 2), and the average performance degradation with such an attack is 3.4×. In the rest of the
article, we use this attack kernel because it causes the largest performance loss. Second, evicting
less than 64 continuous PTEs (reaching at most 2 GB) does not have little impact on the perfor-
mance of user kernels. We speculate that the undisclosed TLB eviction policy may have specific
optimizations for such a case, and that GPU may support a large page size [8], which alleviates L2
TLB contention to some extent.

In conclusion, L2 TLBs can be exploited to conduct a Degradation-of-Service attack on co-
running kernels. In scenarios where the GPU is shared between kernels, current GPU hardware
and runtime systems provide no performance isolation and cannot defend such attacks.

4 TLB-PILOT OVERVIEW

We introduce TLB-pilot to mitigate TLB attacks on GPU. TLB-pilot works for the following sce-
narios commonly found in data centers. Multiple user processes launch GPU kernels on their own
instances and these kernels co-run on the same GPU, to improve hardware utilization and STP.
We focus on co-running two kernels, because this is the most common cases [8, 9, 43, 44, 53, 54].
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Fig. 3. Scattering attack memory blocks into different PTEs.

A user kernel can be a TLB-attacking kernel or a benign application kernel. However, the system
does not have knowledge on whether a co-running user kernel is benign or malign. TLB-pilot
is a system component that transforms co-running kernels before their launches (Section 6) and
schedules their thread blocks on GPU at runtime (Section 6). The goal of TLB-pilot is tthreefold:
(1) achieving TLB isolation to mitigate any potential TLB contention attack, (2) having ignorable
runtime overhead during runtime scheduling, and (3) ensuring high STP.

The basic functionality of TLB-pilot is to assign thread blocks of a given kernel to specific SMs
to mitigate potential TLB contention. Such assignment of thread blocks for a kernel is named SM

policy in the following discussion. TLB-pilot consists of two main components: (1) a lightweight
online SM dispatcher and (2) an SM binder. TLB-pilot uses a simple code transformation to imple-

ment the preceding two components ( ). Figure 4 generally depicts TLB-pilot.

SM dispatcher. The SM dispatcher collects GPU kernel information ( in Figure 4), and the
information is used to generate an SM policy for each co-running kernel before launching those

kernels ( ).
SM binder. The SM binder implements the SM policy ( ). The SM binder coordinates with the

default GPU hardware scheduler to delimit on which SMs a kernel should execute. The SM binder
requires no offline profiling and does not assume the availability of detailed proprietary hardware
scheduling information. The SM binder uses a filling-retreat scheme to assign thread blocks of the

user kernel to SMs ( ) according to the policy. The SM binder uses a kernel splitting technique

to improve resource utilization ( ). This technique leverages idling SMs after the completion of
a short-running kernel among co-running kernels, and removes the side effect of load imbalance
introduced by the SM binder. In general, the SM binder ensures execution correctness while pro-
viding high performance.

5 TLB-PILOT DESIGN

5.1 SM Dispatcher

The SM dispatcher generates SM policies. An SM policy includes following information: (1) how
to assign SMs to co-running kernels and (2) a kernel splitting plan. Using information from (1), we
assign different SM groups to different co-running kernels to achieve TLB isolation. The generation
of (1) and (2) is based on lightweight online analysis.

Lightweight online analysis. The SM dispatcher collects the kernel information right before ker-
nel launch. The kernel information includes grid size, the number of threads per thread block,
input data size, and the size of used shared memory. The kernel information is used to gener-
ate information from (1) (discussed in detail in the next paragraph). The SM dispatcher predicts
kernel execution time to generate a kernel splitting plan. To predict kernel execution time, we
use performance modeling, similar to the existing work [12, 54]. The performance model predicts
kernel execution time, using the collected kernel information as the model input. In essence, the
performance model builds correlation between kernel execution time and the collected kernel in-
formation through linear regression. The performance model is built offline but is employed online
to make the performance prediction. It achieves an average prediction accuracy of 93.1% [12, 54],
which is high. In this work, we do not aim at building a performance model with 100% accuracy.
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Fig. 4. A high-level overview of TLB-pilot.

Our goal is to use lightweight and reasonable models to assist TLB-pilot for kernel splitting (dis-
cussed later). TLB-pilot is highly flexible such that it can easily integrate other performance models.
In Section 8.4 (kernel splitting), we show that our performance model helps TLB-pilot substantially
improve the performance of co-running benchmarks despite its simplicity.

Generating plans for assigning SMs to co-running kernels. The SM dispatcher decides the assign-
ment of SMs to kernels based on SM groups. This means that one co-running kernel uses a set of
SM groups and the other co-running kernel uses another set of SM groups. The two sets have no
overlap. TLB-pilot evenly assigns SM groups to co-running kernels so that the two kernels have
equal opportunity to get hardware resource (SMs). In our platform (GTX 1080 Ti), for example,
this means that each kernel gets two SM groups from the first four SM groups and one SM group
from the last two SM groups. It is possible that even assignment of SM groups to co-running ker-
nels causes unbalanced SM exploitation, and as a result, a co-running kernel takes longer time to
finish than the other. To avoid the preceding problem and loss of STP, TLB-pilot generates a kernel
splitting plan.

Generating the kernel splitting plan. To generate the kernel splitting plan, the SM dispatcher
uses performance modeling to predict the execution time of co-running kernels, then picks the
long-running kernel to decide its splitting. The kernel splitting plan splits the long-running kernel
into parts A and B. The split is implemented by assigning different numbers of thread blocks to
different parts (see the implementation details in Section 6). Part A is launched to SMs decided
in the SM policy and co-runs with the short-running kernel. Part B does not have any constraint
on SMs and begins to run after the short-running kernel is done. We do not constrain where B is
launched, because the short-running kernel is finished and there is no TLB contention.

The SM dispatcher uses the following method to decide how to split the long-running kernel.
Assume that tA, tB , t_sk, and t_lk are the execution time for A, B, short-running kernels, and
long-running kernels, respectively. The SM dispatcher uses the following rules to split the kernel:

(1) tA ≥ tsk ,
(2) tA < tsk + tB .

If the first rule is violated, then A is shorter than tsk , which indicates that B can co-run with
the short-running kernel. Co-running B and the short-running kernel makes the kernel splitting
less effective to reduce TLB contention. If the second rule is violated, thenA cannot leverage those
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ALGORITHM 1: Algorithm for the SM binder.

Require: block_counter : the index counter of thread blocks; SM_policy: SM IDs allocated to the
current kernel; num_f ailures : the number of failed bindings; max_f ailures: max number of
failed bindings;max_id : max block ID defined in the SM policy;

Ensure: runable: a Boolean variable indicating the current thread block to execute or not;
block_id : the id of a thread block;

1: smid = the value of SM ID register;
2: if not SM_policy[smid] then:
3: if atomicAdd(num_f ailures) <max_f ailures then:
4: return false;
5: end if

6: end if

7: block_id = atomicAdd(block_counter );
8: if block_id >max_id then:
9: return false;

10: end if

11: return true, block_id ;

idling SMs after the completion of the short-running kernel or B, because A is constrained to
specific SMs, following the SM policy.

The SM dispatcher uses the performance modeling to predict performance of various combi-
nations of A and B, subject to the preceding two rules. Ideally, we want tA to be close to t_sk as
much as possible such that we minimize SM idleness. The SM dispatcher uses a binary search al-
gorithm to decide A and B. In particular, assuming that the total number of thread blocks in the
long-running kernel is N , the SM dispatcher assigns N /2 to A and then examines if the two rules
are respected and A is close to t_sk . If yes, then we find A and B; if not, then we assign half of the
prior number of thread blocks (i.e., N /2) to A. The SM dispatcher repeats the preceding process by
assigning a lesser number of thread blocks to A until it finds good A and B.

5.2 SM Binder

The SM binder implements the binding between thread blocks and SM groups, based on the SM pol-
icy. Given the co-running of kernels and round-robin-based hardware scheduling, the SM binder
uses an existing filling-retreating scheme [53]. To bind thread blocks with specific SMs, this scheme
first increases the number of thread blocks of a kernel, which is the “filling” phase. After the ker-
nel launches, it is up to the hardware scheduler to schedule thread blocks between SMs follow-
ing the round-robin policy. Some thread blocks are scheduled to some SMs by hardware against
software-defined SM policy. Those thread blocks are terminated, which is the “retreating” phase.
The filling-retreating scheme is applied to the short-running kernel and partA of the long running
kernel. Part B, which runs alone in most cases, does not need this scheme to bind to SM groups..
Next, we discuss how the SM binder applies the filling-retreating scheme.

Filling phase. In the filling phase, the runtime system must decide the number of thread blocks
to increase before kernel launching. The number of thread blocks must be sufficiently large such
that the SM binder can effectively enforce the SM policies, given the hardware-based scheduling.
The number of thread blocks cannot be too large because of the concerns on the overhead of
terminating thread blocks and the interference of scheduling those extra thread blocks on the
round-robin scheduling policy. The existing work [53] uses an online hill-climbing algorithm to
run thread blocks and decide how thread blocks should be co-located in SMs, to determine the
number of threads blocks. However, the hill-climbing algorithm can be slow and put the execution
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of many thread blocks under the TLB attack. The SM binder uses Equation (1) to decide the number
of thread blocks for a kernel:

num_blocksnew = SMall × �num_blocksor iд/SMsubset �, (1)

where num_blocknew and num_blocksor iд are the number of thread blocks after and before using
our filling scheme; SMall is the total number of SMs on GPU; and SMsubset is the number of SMs
specified in the SM policy.

The rationale behind Equation (1) is as follows. We assume that the GPU hardware scheduler
uses a round-robin scheduling policy. Without co-running with other kernels, num_blocksor iд in a
kernel are evenly distributed on SMall . If we want SMsubset to have num_blocksor iд thread blocks
(note that SMsubset < SMall ), we can increase the number of thread blocks to num_blocksnew such
that the GPU hardware scheduler using the round-robin scheduling policy can put num_blocksor iд

on SMssubset . The preceding method is lightweight and does not need the execution of any thread
block to determine the number of thread blocks for the filling phase.

Retreating phase. We use Algorithm 1 to implement the retreating. Each thread block inquires
the SM ID where the thread block is running by reading the SM ID register (lines 1 and 2). If the
SM ID belongs to the SM group assigned in the SM policy, the thread block continues running on
the current SM; if not, the thread block terminates and releases SM.

Because the hardware-based scheduling does not strictly follow the round-robin policy, we must
address two problems during the retreating phase to ensure execution correctness:

(1) The number of thread blocks assigned to the SM group is smaller than that planned in the
SM policy.

(2) The number of thread blocks assigned to the SM group is larger than that planned in the SM
policy.

To avoid the occurrence of the first problem, we introduce a counter (named num_f ailures
in Algorithm 1) to count the number of terminated thread blocks because of mis-binding. If the
counter value is larger than a threshold max_f ailures , then we do not terminate thread blocks
(lines 5–7). The thresholdmax_f ailures is equal to (num_blocknew -num_blockor iд). The threshold
defines the maximum number of thread blocks we can terminate without impacting execution
correctness.

The preceding method places execution correctness into a higher priority but could assign a
thread block to an SM group not specified in the SM policy. However, this mis-assignment does not
happen very often. In our evaluation, most benchmarks (five out of eight evaluated benchmarks)
and the attack kernel do not have mis-assignment at all. Three benchmarks have mis-assignment
in less than 23% of all thread blocks, but the SM policy is effectively enforced to mitigate TLB
attack (see Section 8.4 for more discussion). Note that an attacker cannot leverage mis-assignment
to bypass TLB-pilot by launching a large number of threads, because if so, it would be difficult to
co-run it with the benign kernel (see Section 3).

To address the second problem, we add a counter to count the number of correct assignment of
thread blocks. The counter is increased atomically (line 7). When the counter value reaches the user
requirement on the number of thread blocks, all other thread blocks are immediately terminated
themselves once they are launched by hardware.

6 TLB-PILOT IMPLEMENTATION

TLB-pilot includes a compiler tool for code transformation and a library for runtime control. The
library implements the functionality of SM dispatcher, filling phase, retreating phase, and kernel
splitting. The compiler tool transforms the user code (including both host-side and GPU-side code)
by using the library APIs.

ACM Trans. Archit. Code Optim., Vol. 19, No. 1, Article 9. Publication date: December 2021.



TLB-pilot 9:13

Table 2. APIs in TLB-pilot

Name Description

Host Code
policy dispatcher(params x) Sends fours parameters (thread_num, block_num, shared_mem_num

and kernel_input_data) of kernels to the SM dispatcher and returns
the SM policy (policy).

int new_block_num(int orig_block_num) Returns the number of thread blocks for the “filling phase.”
void kernel_splitting_send(void) Sends a message to the long-running kernel.
void kernel_splitting_receive(void) It blocks execution until it receive a message from a short-running

kernel.
Device Code bool run_or_retreat(policy p) Based on the SM policy to run or retreat threads. If it returns true,

threads continue execution on the SM whose ID is in p.assignedID.

Code transformation. The compiler tool is based on the Clang LibTooling library [13]. The code
transformation only needs one simple pass to transform both CPU and GPU code. We discuss the
implementation details as follows.

At the host side (CPU side), right before each kernel launches, two code blocks are added: one for
implementing the SM dispatcher using a TLB-pilot library API, and the other for implementing the
kernel splitting and calculating the number of thread blocks to implement the “filling phase” using
TLB-pilot library APIs. At the kernel side, at the very beginning of the kernel, a code block imple-
menting Algorithm 1 is added to implement the “retreating” phase. Table 2 summarizes those APIs.
Figure 5 gives an example of how to deploy TLB-pilot on a benchmark (MVT) from PolyBench [20],
where red lines show where the APIs are inserted.

Implementation of kernel splitting. Given a kernel, the kernel splitting code calculates the num-
bers of thread blocks for parts A and B (see Section 5.1). The kernel is then launched twice, using
the calculated numbers of thread blocks for A and B, respectively. This kernel splitting method
changes the thread block indexing but does not impact program correctness, because A and B
can be assigned with non-overlapping, contiguous thread block IDs. Part A runs with the other
co-running kernel (the short-running kernel) using MPS (instead of CUDA stream), because part
A and the co-running kernel come from different processes. Part B immediately runs after the co-
running kernel is done.A and B are assigned to two CUDA streams (instead of using MPS), because
they come from the same user process. To coordinate the execution of part B and the co-running
kernel (the short-running kernel), we employ a named pipe on CPU. In particular, right after the
end of the short-running kernel, the user process on CPU that has launched the short-running ker-
nel sends a message to the other process by the pipe to start B. In addition, in the rare case whereA
and B have to synchronize with each other, an inter-block level synchronization mechanism (e.g.,
a lock in global memory) can be employed.

Use scenarios. We assume that what kind of user kernels will be run in a data center are known
and their source code is available such that we can build performance models and apply code
transformation offline. Many use scenarios can meet the preceding assumption. For example, some
common services or computation in data centers (e.g., matrix vector product and transpose based
on the open source library Eigen [4], and graph traversal based on the open source library [1])
meet the preceding assumption. The existing work makes the same assumption [12, 53, 54]. If the
preceding assumption cannot be met, we can use binary translation/instrumentation tools (e.g.,
NVBit [47] and PANOPTES [28]). These tools allow modifying the assembly code (SASS) of a GPU
application without requiring recompilation. We leave this as future work.

Generality of our method. Our method is based on the foundation that the GPU architectures
commonly have SM groups and TLB is not shared across SM groups. All GPU architectures (in-
cluding Kepler, Pascal, Volta, Turing, and Ampere architecture) have this design because of the
concerns on TLB scalability.
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Fig. 5. An example of deploying TLB-pilot in the benchmark MVT. TLB-pilot APIs are highlighted in red.

7 DISCUSSION

Defense of covert or side channels on TLB. Attackers can leverage GPU TLB to construct a covert
or side channel [19, 36]. These attacks require sharing TLB between benign kernels and malicious
kernels. For covert channels, a trojan kernel and a spy kernel need a shared TLB and timing char-
acteristics (TLB miss or not) to communicate bits of information. For side channel, the attacker
kernel primes and probes shared TLB to guess which memory page the benign kernel has accessed.
TLB-pilot isolates TLBs across kernels, so TLB-pilot prevents these attacks as well.

Comparison between TLB-pilot and existing multitask GPU sharing. Compared with persistent
thread-based approaches, TLB-pilot introduces low extra overhead. TLB-pilot assigns kernels to
SMs before the kernel launches and does not suffer from synchronization overheads between CPU
and GPU after kernels have launched. Compared with SM-centric scheduling, TLB-pilot employs
kernel splitting to achieve a better load balance. In addition, TLB-pilot achieves high isolations and
securities by assigning kernels into different SM groups.

Comparison between TLB-pilot and multi-instance GPU. The A100 GPU supports multi-instance

GPU (MIG) capability, and it can divide a single GPU into multiple GPU partitions called GPU

instances. Each instance has isolated L2 cache banks, memory controllers, and DRAM address
busses [37]. Compared with MIG, the software-based TLB-pilot is more flexible because TLB-pilot
does not require support of specified hardware (MIG is only available on NVIDIA Ampere GPU
Architecture). In addition, TLB-pilot has a higher performance than MIG, because MIG’s instances
do not release resources (e.g., SMs) even if an instance has been finished and it causes unbalanced
SM exploitation (shown in Section 5.1). TLB-pilot employs the kernel splitting to solve unbalanced
SM exploitation.

8 EVALUATION

8.1 Experimental Setup

Our experiments are performed on a system with two 2.10-GHz Intel Xeon E5-2683 CPUs and an
NVIDIA GeForce GTX 1080 Ti discrete GPU. The system runs Ubuntu 16.04.2 LTS with NVIDIA
graphics driver version 418.87 and CUDA runtime 10.1 installed.
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Table 3. Description of Benchmarks in Our Evaluation

Suite Benchmark Dataset NumBlocks NumThreads ExeTime(ms) Domain Description

Attack Default 28 3K 73.51 Attack L2 TLB Evicting L2 TLB.

PolyBench [20]

MVT Default 32 8k 2.24 Linear Algebra Matrix vector product and transpose.

ATAX Default 32 8K 2.27 Linear Algebra Matrix transpose and vector multiplication.

BICG Default 32 8K 2.26 Linear Algebra BICG sub kernel of bibgStab linear solver.

3MM Default 3K 786K 2.82 Linear Algebra 3 matrix multiplications.

GraphBIG [35]

GCOL 10k 494 491K 7.6 Graph Analytics Coloring different vertex or edge in a graph.

GTRI 10k 30 30K 6.43 Graph Analytics Counting triangles in a graph.

GBFS 10k 408 408K 7.66 Graph Traverse Breadth-first search implementation on GPUs.

GDC 10k 272 272K 2.14 Graph Analytics Counting the degree in a graph.

To comprehensively assess TLB-pilot, we choose a set of benchmarks with a wide coverage of
regular and irregular memory access patterns and consisting of compute-intensive and memory-
intensive applications. In particular, we select eight benchmarks for evaluation, shown in Table 3.
Those benchmarks are chosen from PolyBench [20] and GraphBig [35] benchmark suites. Those
benchmarks are commonly deployed in production and have drawn a lot of attention from the
community [43, 44]. The benchmarks from PolyBench are compute intensive; The benchmarks
from GraphBIG are memory intensive and represent various graph algorithms widely deployed in
the real world. Beside those benchmarks, we use the attack kernel depicted in Section 3.

In the evaluation, we compare the performance of TLB-pilot with the performance of two base-
lines: (1) we use a state-of-the-art approach [53] to schedule thread blocks of co-running kernels
to mitigate TLB attack, and (2) we use MPS to co-run kernels without any mechanism to mitigate
TLB attack. The two baselines are labeled as “SMC” and “MPS,” respectively in the figures in this
section. All results reported in this section are the average of 20 runs.

Besides using execution time as a performance metric, we use the following two metrics to
evaluate co-run performance:

(1) Average normalized turnaround time [18, 39]: Normalized turnaround time (NTT) is de-
fined in Equation (2) and used to quantify how responsive kernel execution is. A smaller NTT
indicates a more responsive kernel execution.

NTTi = T
MP
i /T SP

i , (2)

whereT SP
i andTMP

i are the execution time of single-run and co-run, respectively, for the kernel i .
NTT is usually greater than 1. ANTT is the average of NTTs of co-running kernels.

(2) Overall system throughput [18, 39]: STP is defined in Equation (3). It varies from 0 to n (where
n is the number of co-running kernels), and a larger value of STP indicates better overall through-
put.

STP =
n∑

i=1

T SP
i

/
TMP

i (3)

8.2 Overall Performance with TLB Attack

Execution time. Figure 6 shows the execution time of benign and attack kernels under the control of
MPS, SMC, and TLB-pilot. The execution time is normalized by that of stand-alone run. Figure 6(a)
shows that with MPS, the benign kernels suffer from large performance loss, which is up to 4.4×
and 3.7× on average. This large performance loss comes from TLB contention introduced by the
attack kernel. With SMC, the benign kernels have 3.2% performance degradation on average. With
TLB-pilot, the benign kernels have 5.6% performance improvement (no degradation) on average.

We have following conclusions. SMC and TLB-pilot perform better than MPS because of their
efforts for TLB isolation. TLB-pilot leads to 8.8% (5.6% + 3.2%) performance improvement over
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Fig. 6. Normalized execution time of benign kernels co-running with the attack kernel.

Fig. 7. ANTT and overall STP when co-running benign kernels with the attack kernel.

SMC, because TLB-pilot does not fix the number of thread blocks per SM as SMC, which allows the
hardware scheduler to schedule thread blocks of benign kernels for better performance. TLB-pilot
does not require expensive online profiling as does SMC, which also leads to better performance.
TLB-pilot leads to performance improvement (not degradation) in some benchmarks (GCOL, GTRI,
GBFS, GDC), because TLB-pilot constrains thread blocks of the benign kernels to a subset of all
SMs, which improves data locality and encourages data sharing between thread blocks.

Figure 6(b) shows the performance of the attack kernel. We study the performance of the attack
kernel because in a production environment, it is typically unknown whether the co-running ker-
nel is benign or not. TLB-pilot must ensure that the co-running kernel (the attack kernel in this
case) does not have performance loss caused by the software-based scheduling mechanism.

Figure 6(b) shows that the performance loss of the attack kernel is 10.1%, 4%, and 143% with
TLB-pilot, MPS, and SMC, respectively. TLB-pilot shows great performance advantage over SMC
because of the kernel splitting method. The attack kernel is a long-running kernel, and the kernel
splitting method allows it to make best use of idling SMs after the benign kernel is done. MPS
provides the similar performance advantage over SMC because MPS effectively uses the hardware-
based scheduling to use idling SMs. The performance loss of TLB-pilot is slightly larger than that
of MPS because of the software overhead in TLB-pilot. Note that although MPS provides better
performance in the attack kernel than TLB-pilot, MPS provides much worse performance in the
benign kernel than TLB-pilot.

ANTT and STP. Figure 7 shows performance in terms of ANTT and STP. Results are normal-
ized by those with MPS. Compared with MPS, Figure 7(a) shows that SMC and TLB-pilot reduce
ANTT by 25.8% and 56.2% on average, respectively, and Figure 7(b) shows that SMC and TLB-pilot
improve STP by 13.3% and 60.6% on average, respectively. TLB-pilot performs best in all cases.
TLB-pilot performs better than SMC because of kernel splitting to make best use of idling SMs to
improve STP. TLB-pilot performs better than MPS because of TLB isolation. The SMC approach
has an obvious degradation in both ANTT and STP for benchmarks 3MM, GCOL, GBFS, and GDC.
Those benchmarks use relatively large numbers of thread blocks, and using a fixed number of
thread blocks per SM in SMC prevents optimization from the hardware scheduler.

8.3 Co-Run of Benign Kernels

We study the performance of co-running benign kernels with MPS, SMC, and TLB-pilot. Given
eight benign kernels, there are 28 cases of two co-running kernels. All results are normalized by
that of MPS.
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Fig. 8. ANTT of co-running benign kernels.

Fig. 9. STP of co-running benign kernels.

Figure 8 shows the ANTT results. Compared with MPS, SMC and TLB-pilot introduce 17.7% and
10.1% degradation on average, respectively. For the benchmark 3mm-gbfs, TLB-pilot has a rather
large performance advantage (48.2%) over SMC, because SMC launches massive thread blocks
during the filling-phase, which degrades performance. Figure 9 shows the STP results. SMC and
TLB-pilot introduce 14% and 7.8% degradation on average, respectively.

In conclusion, TLB-pilot has better performance than SMC but performs slightly worse than
MPS. This is because SMC and TLB-pilot are based on MPS to achieve co-running, and the software-
based scheduling in SMC and TLB-pilot may impact the effectiveness of hardware-based schedul-
ing, causing the preceding overhead.

8.4 Performance Breakdown Analysis

Effectiveness of kernel splitting. We use the four benchmarks from the PolyBench benchmark suite
to evaluate the effectiveness of kernel splitting (the GraphBIG benchmark suite has similar results).
We co-run each of them with the attack kernel or co-run any two of them, with and without kernel
splitting (in total, we have 10 cases). Figure 10 shows performance in terms of STP. We show STP
because kernel splitting is supposed to impact STP. The results in the figure are normalized by
those of using MPS. The figure shows that compared with MPS, TLB-pilot with kernel splitting
has 8.5% improvement (no degradation) on average and 8% degradation without kernel splitting.
Co-running benchmarks attack kernel, and 3 mm with kernel splitting leads to the largest improve-
ment (82%), because the two kernels in the benchmarks have a large difference in the execution
time (50×), hence giving more room to use kernel splitting to improve STP.

Occurrence of mis-assigning thread blocks to SMs. Since the hardware-based scheduling does not
strictly follow the round-robin policy, thread blocks may be assigned to an SM group not speci-
fied in the SM policy to ensure program correctness (see the retreating phase in Section 5.2). We
quantify how often this mis-assignment can happen. We use a metric, the mis-assignment ratio,
defined as the ratio of number of mis-assigned thread blocks to the total number of thread blocks.
Figure 11 shows the mis-assignment ratio for each kernel when it co-runs with the attack kernel.

We have a couple of observations. First, the mis-assignment in most kernels (including the attack
kernel) does not happen often (the ratio is 0 in six benchmarks). Second, three benchmarks (3MM,
GBFS, and GDC) have a relatively high mis-assignment ratio (21.6%, 21.4%, and 22.6%, respectively).
After examining the benchmarks, we find that they use 786K, 408K, and 272K threads, respectively,
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Fig. 10. Normalized STP with and without kernel splitting in TLB-pilot.

Fig. 11. The mis-assignment ratio for all benchmarks.

much larger than the number of threads our GPU can concurrently execute (56K threads). As a
result, it is highly likely that the hardware scheduler runs out of threads in some SMs specified
in the policy and uses other SMs to maximize STP. However, even with the mis-assignment, TLB-
pilot still effectively mitigates performance impact of TLB attack. Figure 7 shows that for the three
benchmarks, compared with MPS, TLB-pilot still causes large performance improvement (42.4%,
45.3%, and 47.3% in ANTT, respectively, and 57.7%, 54.6%, and 64.3% in STP, respectively). Further-
more, the performance difference between the mis-assignment case and stand-alone execution (i.e.,
the benchmark execution without using co-run) is less than 10% for all three benchmarks, which
indicates that the performance impact of mis-assignment is small. This effectiveness is because of
two reasons. First, the attack kernel is bound to specific SMs very well without mis-assignment.
Second, the mis-assignment does not happen often enough to cause serious performance slow-
down in benign kernels.

8.5 Overhead Analysis

TLB-pilot adds extra code to kernels. To quantify runtime overhead due to the extra code, we run
each benchmark with TLB-pilot and name its execution time asTT LB_pilot . The runtime overhead is
defined as (TT LB_pilot -Torд)/Torд , whereTorд is the execution time of the original kernel. Figure 12
provides the overhead results. It shows that TLB-pilot introduces up to 0.8% (0.3% on average)
overhead. In general, the runtime overhead introduced by extra code is negligible.

8.6 Security Analysis

The TLB attack causes performance degradation. Therefore, if TLB-pilot guarantees high perfor-
mance of a benign kernel when co-running with the attack kernels, then TLB-pilot effectively
prevents the TLB attack. The high performance means high security in the case of the TLB attack.
Figures 6 and 7 show high performance of benign kernels, demonstrating high security provided
by TLB-pilot.

The adversary may use the following methods to evade TLB-pilot but cannot succeed. We dis-
cuss them next.

Creating multiple attack instances. The adversary can create multiple attack instances such that
an attack instance can share the same SM assignment with the benign user to disable TLB-pilot.
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Fig. 12. The runtime overhead of introducing extra code in user kernels by TLB-pilot.

This attack must rely on detailed knowledge on how attack instances are assigned to GPUs. Such
knowledge is missing in real production environments because the adversary only sees virtual
GPUs and cannot know whether the attack instances are scheduled to the same physical GPU or
not.

Leveraging mis-assignment to disable TLB-pilot. Mis-assignment violates the SM policy to as-
sign a thread block to an SM group. Although mis-assignment does not happen often (shown in
Figure 11), an attack kernel may leverage the mis-assignment to disable TLB-pilot. However, this
attack is not feasible for the following reason. The adversary must launch a large number of threads
to cause high mis-assignment to disable TLB-pilot. Figure 11 shows that the adversary must launch
at least 272K threads to lead to a 20% mis-assignment ratio but still cannot disfunction TLB-pilot
because of high security provided by TLB-pilot. Launching a larger number of threads, the attack
kernel has difficulty in co-running with the benign kernel (Section 3) because of hardware sched-
uling, which makes the attack invalid.

9 RELATED WORK

Multitask GPU sharing. Time multiplexing with application preemption enables GPU sharing by
running kernels from difference applications back to back [45, 49]. Elastic kernel [39] is a software
approach for spatial multiplexing that requires manual slicing of GPU kernels. Warped-Slicer [55]
is a mechanism for partitioning a single SM across multiple kernels in contrast to the coarser
granularity of assigning a kernel to a subset of SMs. Preemptive multitasking relies on context
switching, which often incurs substantial overhead due to the large context on GPUs. To address
this issue, Lin et al. [31] propose a method to reduce the overhead of context switching by com-
pressing the thread block level state. Chimera [40] proposes a collaborative preemption approach
that can precisely control the overhead for GPU multitasking. Dai et al. [15] balance memory ac-
cesses of concurrent kernels and limit the number of inflight memory instructions to improve
performances. Wang et al. [51] propose quality of service mechanisms for a fine-grained form of
GPU sharing. However, they do not consider TLB attack.

GPU virtual memory and TLB designs. Vesely et al. [46] present a detailed analysis on virtual
memory support in heterogeneous systems, revealing that address translation incurs high latency
and hurts performance. Shin et al. [43, 44] address the issues of address translation (especially
page table walks) in irregular GPU applications. Virtual caching [58] reduces bandwidth demands
for the shared address translation hardware. Most of these works focus on integrated GPUs or a
single GPU application, whereas we study TLB contention among concurrent GPU applications
on discrete GPUs.

VAST [29] provides the illusion of large memory space for GPU applications using a software
TLB design. Karnagel et al. [25] show that random memory accesses in database operations cause
TLB contention that results in significant performance degradation. Multitask GPU sharing and
TLB contention in real GPU applications inspire this work.
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GPU scheduling. TimeGraph [26] is a kernel space real-time GPU scheduler for computer graph-
ics. Gdev [27] provides a GPU scheduling scheme to virtualize GPUs, which enhances the isolation
among multiple tasks. These works focus on priority-based scheduling of GPUs in real-time sys-
tems. TLB-pilot schedules thread blocks to different SMs on GPU by considering microarchitectural
features.

Kernel slicing has been proposed to support preemptive scheduling [60, 62]. It splits long-
running kernel into multiple short ones, each of which contains a subset of thread blocks sched-
uled to run in turn. Our approach is similar to kernel slicing, but the difference is that we consider
how to effectively mitigate TLB attack during the kernel splitting. EffiSha [11], FLEP [54], and
SMGuard [59] are three systems designed for preemption-based scheduling, based on source code
transformation using a compiler-runtime framework. These systems adopt the persistent thread
mechanism [21] to enable the scheduling of tasks. The persistent thread-based approach cannot
be used to mitigate TLB contention because of the lack of knowledge on TLB microarchitecture.

Side and covert channels on GPUs. Nayak et al. [36] demonstrate that attackers can leverage GPU
TLB to construct a covert channel, but this work does not consider how to defend against TLB-
based attacks. GPUGuard [56] designs a decision tree based detection and a hierarchical defense
framework to close the covert channels. However, GPUGuard’s security domains is based on tem-
poral partitioning, so it cannot prevent malicious kernels from evicting PTEs of benign kernels
and the TLB-contention attack in our article still works.

10 CONCLUSION

Co-running GPU kernels on a single GPU brings new challenges on application securities. In this
article, we reveal how TLB attack can happen on GPU with co-running kernels. This new attack
can cause up to 3.9× performance slowdown. We discuss how this attack leveraging GPU microar-
chitecture and hardware scheduling can happen. We introduce a software-based solution named
TLB-pilot to mitigate the TLB attack without modification of hardware. TLB-pilot coordinates with
application-agnostic, hardware-based scheduling to bind thread blocks of a kernel with specific
SMs to enable TLB isolation. The result shows that TLB-pilot mitigates TLB attack. When under
TLB attack, TLB-pilot provides large performance improvement over the traditional MPS-based
co-running solution and a state-of-the-art co-running solution for efficient scheduling of thread
blocks.
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